Quantitative Interpretation Lee Hunt

Quantitative Interpretation

Scott Reynolds

Scott Hadley

Mark Hadley

Jon Downton

Satinder Chopra

Changing reservoirs, world

Conventional

Unconventional

Beginning of the end?

Some say geosciences are in their twilight

The art has gone out of the science

It is all engineering now

- The art has gone out of the science
- It is all engineering now

This is untrue, however we must change

Quantitative method

Case study I: Interpolation / economics

Case study II: Steering horizontals

Case study III: Fractures & production

Conclusions

Begin with the end in mind

Begin with the physics in mind

*** Stephen R. Covey

Begin with the end in mind

Begin with the physics in mind

And then make measurements

We need to speak in the language of the earth

Earth properties from seismic properties

- More scientific
- Results oriented
- Transferable to others
- Measureable success and accuracy
- Forces conclusions and commitment
- >Hi-lights need for improvement

Directs investment & research

Heart of the scientific method is quantitative

We always needed to use quantitative methods The new challenges require it more

No measure = no meaning

History

- Time vs depth
- Amplitude / quality
- CMP
- Inversion
- AVO
- **AVO Inversion**
- **Azimuthal methods**
- Curvature
- **Multi-attribute methods**
- Engineering

Rummerfield (1954) Mayne (1962) Lindseth (1979) Ostrander (1984), Shuey (1985) Goodway et al (1996) Ruger (1996), Lynn et al (1996), Gray et al Roberts (2001), Chopra and Marfurt (2007) Schultz et al (1994), Hampson et al (2001) Goodway et al (2006), Perez et al (2011) Gray (2010, 2011), Dunphy & Campagna (2011)

See also Barnes (2001), Avseth et al (2005)

Attribute soup

- **Nearly infinite number of attributes**
- Can be combined in multi-attribute methods

Can be confusing

Can be used as a washing machine

Schultz et al (1994), Hampson et al (2001)

- The best physical property is usually known
- Don't think of the problem as hundreds of attributes

The best physical property is usually known Don't think of the problem as hundreds of attributes

.... But a few key seismic properties

The best physical property is usually known Don't think of the problem as hundreds of attributes

.... But a few key seismic properties

And many ways of measuring them (attributes)

Properties, then attributes

stploration.

CSEG

`				-	_							
		A. Some of the se	ismic dat	a types o	r prop	perties						
Information	Туре	Property	Thin bed / tuning	Structure	Fluid	Lithol oav	Fault / frac	Strain	Stress	edges	bedding continuity	
	~	Time section										
Fundamental	ack	Velocity										
Slack	ي. ا	Depth section										
~		Intercept, Gradient, Rp, Rs										
l pre-stack perties	AVO	Fluid Factor, Poisson's ratio										
		λρ										
		μρ										
enta pro		λρ – μρ										
ock ame		λρ / (λρ + 2* μρ)										
pur		Young's Modulus										
ц	Azimuth	VVAz- velocity anisotropy										
B. Examples of both properties and attributes												
			Thin bed /			Lithol	Fault				bedding	
Information	Class	Attribute	tuning	Structure	Fluid	ogy	/frac	Strain	Stress	edges	continuity	
		Time pick (horizon)	-									
Horizon	Horizon	Depth pick (horizon)										
/		Curvature										
ute	are	Dip Din animuth										
ttrib	exti	Dip-azimum Second derivative										
y V	ort	Lambertian reflectance										
lum	, be	Strike										
vol	shag	Throw										
T or	al, s	Semblance										
izoı	pati	Discontinuity										
Hor	S	Simple difference										
		Waveform difference										
		C. Some of the attribu	tes or me	asuremer	nts on	prope	rties					
ces within a volume)	or interval of any size: s of amplitude and trace shape	Amplitude, at horizon or windowed										
		Isochron between horizons										
		Ave amplitude, ABS, Mean, RMS, etc										
		Ave or instantaneous frequency										
		Variance										
		Maximum										
		Number of peaks										
f tra	w, a ions	% above Threshold										
or of	Windov servati	Energy halftime										
0)		Spectral components										
erty	ob	Waveform										
a prop	Time-	Spectral decomposition										
	Frequency	Attenuation										
s of	e	Instantaneous amplitude										
ute	Tra	Instantaneous phase										
ttrib	ex	Instantaneous Frequency						?				
Ā	du	Average Weighted Frequency										
	ပိ	Instantaneous Q										

Attributes or properties

Validating data

the system of th

- May or may not be a "log"
- May or may not require data in time or depth
- Different experiments, different ways of relating data

Every interpretation is a scientific experiment

Quantitative Method

- Earth property of interest
- Seismic properties (physics)
- Process to succeed
- >Accumulate control data (earth properties)
- Accumulate seismic attributes
- Explore for relationships (compare / correlate)
- Create estimated earth property maps

Case study I: Viking AVO and NPV

- Follows work published in 2008
- ≻29 wells drilled prior
 - >Interpolation to improve imaging
 - >Improved imaging to improve AVO
 - Improved AVO to map porosity

Now let us look at the economic impact New wells drilled

West Central Alberta

CSEG

The area is structured and many zones are gas charged

The Viking is erosionally preserved

Old method: stack amplitudes

Use AVO to do better

The Viking is structured

CSEG

5D Interpolation

CSEG

Source line map after interpolation

PSTM Gathers Key observation

PSTM

MUNDERSOUTH

11 HELDERA

HOW TRANSFORM ---and a sub-

monncarnatirere'

2000300

Madement Performance 704

"with a start and the "with

Map Comparisons (Rp Rs ratio)

PSTM AVO vs Interpolation + PSTM & AVO

The interpolated version is cleaner

Correlation *results: PSTM comparisons*

PSTM AVO

Interpolation + PSTM & AVO

Map Comparisons (stack vs AVO)

Stack Amplitude vs Interpolated AVO

Correlation results: Stack vs AVO

How do we determine value?

- >A posterior to a piori:
 - > New results have more meaning

- Interpolation AVO vs stack amplitudes
 Accuracy
- >Economics

New Drilling: 29 to 69 wells

44ploration

seophysicis

CSEG

ENERGY LID.

Value calculation

Independent classification of all wells

- ≻All wells
- >No seismic at all, or Viking not a target
- Viking target, old method
- Viking target, new method
- ➢Phi-h by class
- Rate and reserves model to Phi-h
- Average Phi-h for each class
- >Model economics for each class

Economic model

Economic models	Count	Average PHI-H	% Diff	3 Month IP Prediction (mcf/d)	EUR Prediction (mmcf)	NPV 10 high price deck (\$M)	IRR high price deck (%)	Pay Out (yrs) high price deck	NPV 10 low price deck (\$M)	IRR low price deck (%)	Pay Out (yrs) low price deck
All Wells	69	39.8	-20%	859	1535	\$ 3,125	25	2.6	\$ 1,525	17.2	3.6
Wells not targetting Viking	18	6.0	-88%	665	1176	\$ 1,575	18	3.4	\$ 335	10.7	4.6
Old Wells, targetting Viking	32	49.5	0%	948	1707	\$ 3,800	29	2.3	\$ 2,095	20.1	3.2
New Wells, targetting Viking	19	65.3	32%	1144	2092	\$ 5,000	35	1.9	\$ 3,100	24.5	2.7

32% higher Phi-h on average ~ 1 million dollars NPV per well

Case study II: steering horizontals and improved production

Devonian oil Sask

Devonian oil play

5

Fluid rate related to steering

Old method could not use seismic

934

Demon haunted world

Goal: estimate top and base of reservoir

Three elements:

Reprocess for high frequencies
Use all control points for T-D to Bakken
Use amplitudes for some isopachs

Reprocessing

Goal: high frequencies with veracity

>Hybrid surface consistent deconvolution

>Interpolation

Spectral balance

Horizon consistent velocities

Old method could not use seismic

934

New data: can pick better

Exploration

eophysicists

Depth map to the Bakken

Start:

CSEG

A depth map

Unlocking details beyond T-D

So our depth estimate involves the reservoir

New data: no more mystery

there are a start of the start

Seismic now the key to horizontals

≻25 old horizontals

> New program of 19 horizontals were drilled

Fluid (model) value

- 91% accuracy vs 78% accuracy implies:
- >19 more barrels of fluid per day

Models to:

> \$400 per day per well

Our wells appear to be doing better than this:

Case study III: fractures & production

Introduction-Nordegg

CSEG

Aerially extensive gas charged sandstone Deep basin

Hrz, vertical well, & Microseismic 62 bins hrz + 400,000 meters² of variation

Direct Methods- AVAz and VVAz

Ruger and Tsvankin (1997)

$$R(\theta,\phi) = A + [B_{iso} + B_{ani}\cos^2(\phi - \phi_{sym})]\sin^2\theta$$

 B_{ani} : Anisotropic gradient \implies crack density

VVAz: Velocity difference \implies crack density

AVAz & VVAz \implies requirements on data & media > HTI media

> equation solve-able on the data

Indirect Method- Curvature

(Murray, 1968; Roberts, 2001; Chopra & Marfurt, 2007)

Interpolation and AVAz

5 x 3 special scaling

Interpolation, 5x3

Interpolation and AVAz

Fracture estimation roll-up

	Best Correlation Coefficient	
	MI Fracture Density	Microseismic (195 points)
AVAz	0.612	0.638
VVAz Anisotropy	0.539	0.310
Curvature	0.739	0.370
Coherence	-0.215	0.065

>Each method gets it partly right

> ... and partly wrong

Map Using AVAz and Curvature

AVAz and Curvature: co-render

With production data

Wellbore / log extraction: well A —

Experimental Set-Up

3 wells

8 Frac intervals Per well

Different length ~40 to 180m

Attempted same size of frac (100 tonnes)

Production: 2 wells with full logs

Production: 3 wells with seismic

4 wells with Fracture Gradients

FAÌI ENE CC = 0.666

≻Of a larger point

End of the beginning

- >We must be quantitative
- Leads to increased involvement (all disciplines)
- >The work guides us to best efforts
- >There is value in this
 - better Phi-h = NPV
 - better steering = Rate
 - better stimulation = Rate

This is our attempt to be better

Acknowledgements

- Fairborne Energy LTDCGGVeritas Canada
- Scott Reynolds, Scott Hadley, Mark Hadley, Emil Kothari
- Kirk Propp, Nick Ayre, Tyson Brown, Michael Kinzikeev
- >Alicia Veronesi, Alice Chapman, Dave Wilkinson,
- >Jon Downton, Brian Russell, Scott Cheadle CGGVeritas
- Satinder Chopra, Arcis
- Darren Betker and Earl Heather, Divestco Inc
- Bill Goodway, Marco Perez, Apache
- >Dave Gray, Rory Dunphy, Nexen
- Peter Cary, Sensor Geophysical