Quantitative Interpretation Lee Hunt

Quantitative Interpretation

Scott Reynolds

Scott Hadley

Mark Hadley

Jon Downton

Satinder Chopra

Outline

Introduction

- **Research and applied science**
- **Quantitative method**
- **Case study: Interpolation / AVO**
- Case study: steering horizontal wells
- Case study: fracture estimation & production
- **Research examples**

Conclusions

Map the layers of the earth

CSEG

Hydrocarbons flow through reservoirThey are trapped by seals

Excellent reservoir (Cardium)

Excellent reservoir (Cardium)

Unconventional reservoir

Introduction: oil & gas & horizontals

Fracture stimulate many times in each well All these activities can be of concern

P wave reflectivity (Rp)

First use: up / down

Single fold: find the apex

from Hunt et al 2009

How hard is it to make predictions?

We measure in time We never "see" the rock We do not "see" oil or gas We do not "see" porosity

How far away is that light pole?

CMP developed (Mayne, 1962)

With 3D surveys, offsets (angles) and azimuths

CGGVERITAS From Russell, CCGVeritas

REPRE Aki and Richards (1979), Thomsen (1986)

Complex: P and S-wave Velocities

Undeformed schematic rock volume of porous sandstone

Shear Velocity Change in shape only Compressional Velocity Change in volume and shape

<u>AVO Inversion</u> $R(\theta, \phi) = A + [B_{iso}] \sin^2 \theta$

AVAz, VVAz (fractures) (Ruger and Tsvankin (1997)

$$R(\theta, \phi) = A + [B_{iso} + B_{ani}\cos^2(\phi - \phi_{sym})]\sin^2\theta$$

 B_{ani} : Anisotropic gradient \implies crack density

VVAz: Velocity difference \implies crack density

Heavier data requirements & earth assumptions

Fracturing: ε , δ , γ (vertical well)

A rotation of Thomsen parameters

End properties, imaging, sampling

Migration transforms an input wavefield into an output image:

$$p'(t,x') = \int_{-\infty-\infty}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} W(...)\delta(...)p(\tau,x)d\tau dx$$

Getting the best results requires that there is no:

- Input Data Aliasing
- Output Data Aliasing
- Migration Operator Aliasing

From Cary, 2007

End properties, imaging, sampling

Migration

we must be well sampled in offsets & azimuths

From Cary, 2007

Fracture inference: Curvature

(Murray, 1968; Roberts, 2001; Chopra & Marfurt, 2007)

show of action Geophysical

Image log fracture validation (Luthi, 1990)

An electrical image that can see fractures down to

Applied Science:Research happens

"Physics" is seldom wrong

...but our use of it often is

De-simplified physical model

Our experiments have issues

...which lead to opportunities

Balance of validity vs practicality

This balance changes

Attributes or properties

Quantitative Method

- Earth property of interest
- Seismic properties (physics)
- Process to succeed
- >Accumulate control data (earth properties)
- >Accumulate seismic attributes
- >Explore for relationships (compare / correlate)
- Create estimated earth property maps

*** better software will help the comparisons

Case study I: Viking AVO and NPV

Follows work published in 2008

≻New drilling

Interpolation to improve imaging
Improved imaging to improve AVO
Improved AVO to map porosity
Enjoy better economics

West Central Alberta

CSEG

The area is structured and many zones are gas charged

The Viking is erosionally preserved

Old method: stack amplitudes

The Viking is structured

CSEG

Example line from Well B to Well A

Sparse shooting

Source line map before interpolation

5D Interpolation

Source line map after interpolation

5D interpolation (Lui & Sacchi, 2004, Trad, 2007)

Least Squares inversion: at every temporal frequency solve...

ENERGY LTD.

Map Comparisons (Rp Rs ratio)

The interpolated version is cleaner

Correlation *results: PSTM comparisons*

Interpolation + PSTM

How do we determine value?

- >A posterior to a piori:
 - > New results have more meaning

- Interpolation AVO vs stack amplitudes
 Accuracy
- >Economics

New Drilling: 29 to 69 wells

44ploration

seophysicis

CSEG

ENERGY LID.

Value calculation

Independent classification of all wells

- ≻All wells
- >No seismic at all, or Viking not a target
- Viking target, old method
- Viking target, new method
- ➢Phi-h by class
- Average Phi-h for each class
- ➢Phi-h modeled to rate, reserves, NPV
- Model economics for each class

Economic model

Economic models	Count	Average PHI-H	% Diff	3 Month IP Prediction (mcf/d)	EUR Prediction (mmcf)	NPV 10 high price deck (\$M)	IRR high price deck (%)	Pay Out (yrs) high price deck	NPV 10 low price deck (\$M)	IRR low price deck (%)	Pay Out (yrs) low price deck
All Wells	69	39.8	-20%	859	1535	\$ 3,125	25	2.6	\$ 1,525	17.2	3.6
Wells not targetting Viking	18	6.0	-88%	665	1176	\$ 1,575	18	3.4	\$ 335	10.7	4.6
Old Wells, targetting Viking	32	49.5	0%	948	1707	\$ 3,800	29	2.3	\$ 2,095	20.1	3.2
New Wells, targetting Viking	19	65.3	32%	1144	2092	\$ 5,000	35	1.9	\$ 3,100	24.5	2.7

32% higher Phi-h on average ~ 1 million dollars NPV per well

Case study II: steering horizontals and improved production

Applied Science

Devonian oil Sask

Devonian oil play

5

Fluid rate related to steering

CSEG

Old method could not use seismic

934

Demon haunted world

Goal: estimate top and base of reservoir

Three elements:

Reprocess for high frequencies
 Use all control points for T-D to Bakken
 Use amplitudes for some isopachs

New data: can pick better

Exploration

eophysicists

New data: no more mystery

there are a start of the start

CSEG

Seismic now the key to horizontals

≻25 old horizontals

> New program of 19 horizontals to be drilled

Fluid (model) value

- 91% accuracy vs 78% accuracy implies:
- >19 more barrels of fluid per day

Models to

> \$400 per day per well

Our wells appear to be doing better than this:

Case study III: fractures & production

Applied Science

Introduction-Nordegg

CSEG

Aerially extensive gas charged sandstone Deep basin

Hrz, vertical well, & Microseismic 62 bins hrz + 400,000 meters² of variation

CSEG

Qualitative analysis

CSEG

AVAz vs MI Fracture Density Map

0

9

Discussion: Roll-up

	Best Correlation Coefficient						
	MI Fracture Density	Microseismic (195 points)					
AVAz	0.612	0.638					
VVAz Anisotropy	0.539	0.310					
Curvature	0.739	0.370					
Coherence	-0.215	0.065					

- Consistency in the results
- Statistical significance is achieved
- We can draw conclusions

Map Using AVAz and Curvature

AVAz and Curvature: Cross Plot

AVAZ RMS

AVAz and Curvature: co-render

With production data

CSEG

Production: reservoir

Dual Porosity

One Gridblock

CSEG

Fracture porosity is very low Fractures could help or hinder

From Wang 2008

Wellbore / log extraction: well A —

CSEG

4 wells with Fracture Gradients

Conclusions

- Modern role: science + business
- >We must be quantitative
- >Leads to increased involvement (all disciplines)
- >The work guides us to best efforts
- ➤There is value in this
 - better Phi-h = NPV
 - better steering = Rate
 - better stimulation = Rate

station Geophysicity Station Station Stations

Acknowledgements

- Fairborne Energy LTD
- CGGVeritas Multi-Client Canada
- Scott Reynolds, Scott Hadley, Mark Hadley, Emil Kothari,
- >Michael Kinzikeev, Kirk Propp, Nick Ayre, Tyson Brown, Fairborne
- >Alicia Veronesi, Alice Chapman, Dave Wilkinson,
- >Jon Downton, Brian Russell, Scott Cheadle, CGGVeritas
- Satinder Chopra, Arcis
- Darren Betker and Earl Heather, Divestco Inc
- Bill Goodway, Marco Perez, Apache
- Dave Gray, Rory Dunphy, Nexen
- Peter Cary, Sensor Geophysical

