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Outline

• Fault Slip 101: Mohr Diagrams
• Classification of Slip-on-a-Plane Models
• Basic Equations for Fault Re-activation
• Some Missing Physics: poro- and thermal elastic effects, real fault 

friction, real fracture geometries, and more
• Farrell Creek Montney Gas Field NEBC

• 32 DFIT or mini-frac tests
• Polar plots of fault re-activation tendency for 3 stress states
• Critically stressed fractures for one pad in n -  space
• Recorded earthquakes with ML > 2.0, 2010-2014

• Take Away Points
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Basic Geomechanical Elements of The Fault Slip Problem

IN-SITU 
STRESSES
v, Hmin, Hmax

ROCK
MECHANICAL
PROPERTIES

(E,  rock
strength, permeability)

DISCONTINUITIES
Faults, Fractures, 

Shear Zones, Bedding 
Planes, Gouge, etc..

PORE 
PRESSURES

INDUCED STRESSES & PRESSURES (Hydraulic 
Fracturing, Water Disposal or Fluid Production)

+
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Effective Normal Stress, n

Classic Mohr-Coulomb Failure Criteria for 
A Fault with an “Apparent” Cohesion”

Classic depiction of injection 
that increases pore 
pressure, thus reducing the 
effective normal stress. Note 
the  Mohr circle will change 
size  due poro-elastic and/or 
thermal effects.
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Early Example of the Mohr-Coulomb Failure Criteria 
and Its Application to Induced Seismicity 

Horner et al, Earthquakes and Hydrocarbon 
Production in the Fort St. John Area, British 
Columbia, Canadian Journal of Exploration 
Geophysics, June 1994.
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A Classification of “Deterministic” Modelling Approaches 
for Fault Re-activation ( aka the Slip on a Plane Problem)

Model Type Type/Properties Example

Analytical Basic Mohr-Coulomb Criteria
• Slip Tendency, Ts
• Factor of Safety, Safety Factor
• Critical Stress Perturbation (CSP)
• Critical Failure Function (CFF)

Various
STABView
Sibson, 1990
MohrFracs

Analytical        
(Field Scale)

Field scale visualization with critically 
stressed structures

TrapTester
Fracman

General Purpose 
Numerical Models

• Finite Elements
• Finite Differences
• Distinct Elements
• Boundary Elements
• Coupled reservoir-geomechanical

ABAQUS
FLAC
UDEC, 3DEC
Map3D
GEOSIM

Seismology 
Models

Large scale earthquake simulators with 
advanced capabilities, rate-dependent 
friction, etc..

RSQSim
DYNA3D

Partial  list of software examples only
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Calculation of Shear Stresses on an Inclined
Fault Plane in a Triaxial In-situ Stress State
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  fracfrac pc  tan zzmax

Shear failure occurs when:

22
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Where:

 =     dip angle
 =     dip azimuth (wrt Hmax)
cfrac =     apparent cohesion of the fault plane
frac =     friction angle of the fault plane
p     =     fluid pressure within the fault plane

v

Hmin

Hmax

yz

xz

zz

Limiting Assumption: one 
principal stress is vertical; 
the other two are horizontal. 
NOT TRUE everywhere!
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Modified Slip Tendency Tsm- A Simple Model for 
Assessing the Propensity for Fault Re-activation

 
     faultslip

sm p
T
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3131

31
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
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New Fluid 
Pressure 
on the Fault

Fault 
Friction 
Angle

Example of Fault 
Re-activation in a 
Normal Fault 
Stress Regime

v = 

H = 

Fault Dip Angle

Hawkes and McLellan, JCPT, 2005
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Analytical Models for Assessing Fault Reactivation
STABVIEW Slip on a Plane Polar Plot Analysis

GMI (now Baker Hughes) 
MohrFracs for Critical 
Stressed Fractures
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But Are We Missing Something? 
Typical Assumptions That Can Get Us in Trouble

Missing Bits of Physics

• Poro-elastic effects on the vertical and horizontal stresses DUE to 
the injection, can change the local stresses on the fault
 Better known consequences of depletion causing changes in 

horizontal stress. Dependent on the stress regime, mechanical 
properties, boundary conditions. Also known as “stress path”  effects.

• Thermal elastic effects on the vertical and horizontal stresses 
DUE to the injection of  fluids cooler than the ambient reservoir 
temperature
 Typically leads to a reduction in the horizontal in-situ stresses

• Well-known “stress shadow effects” from adjacent frac stages are 
not usually accounted for in these analytical models
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But Are We Missing Something? 
Typical Assumptions That Can Get Us in Trouble

Missing Bits of Physics (cont.)
• Coefficient of static friction (tangent of the fault friction angle) is 

often set to 0.6 (=>31º). This can be a sensitive parameter  in 
many analyses . Depending upon the host rock mineralogy and 
the fault-filling material it can range from 0.4 to 0.8. For example, 
lab derived Montney bedding plane residual friction angles 
averaged 28º (=>0.53)

• Typically a uniform fluid pressure along the fault is assumed, 
although the real fluid pressure is a consequence of friction drop 
and fluid loss. Fracture Net Pressure (ISIP-Hmin) is  the clue to the 
real BHP.

• The fault plane geometry is approximated by a single plane 
whereas it is often a more complicated rough, sometimes 
irregular, branching set of smaller faults and fractures.
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Classic Poro-elastic Stress Relationship – Passive Basin
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Where:

 H
Change in average 
horizontal in-situ stress 
due to injection or 
production

 fmp
Change in formation pore 
pressure due to injection 
or production

 Static Poisson’s Ratio

 Biot’s Parameter

Other relationships exist that can account for:
• Strike slip or thrust fault initial stress states
• Reservoir shape (aspect ratio, axisymmetric, plane strain)
• Elastic properties of the reservoir and surrounding rocks
• Thermo-elastic effects (conduction)
• Natural fractures
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Farrell Creek Field, NEBC Showing Faults and the 
Location of Horizontal Wells, April, 2012

Major faults 
detected on seismic

1 mi

McLellan, 2012

13-36 Pad
Wells
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Net
=

Typical Pressure vs Time Record in a Diagnostic Fracture 
Injection Test (DFIT) or Mini-frac

FCP (Fracture 
Closure 
Pressure) ~ min
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To Reservoir Pressure, Pr

P

After Closure Analysis (ACA) for Pr, kh

Net Pressure
= ISIP - FCP

McLellan et al,  CSPG  Gussow Conference, 2013
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Data from McLellan et al,  GeoConvention, Calgary, 2014
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The Effect of the In-Situ Stress State and Injection 
Pressure Gradient on Fault Re-activation
Case 1: Strike Slip Fault Stress Regime

Analysis with STABView software

Note: Poro-elastic effects due to injection NOT accounted for in this example.
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The Effect of the In-Situ Stress State and Injection 
Pressure Gradient on Fault Re-activation
Case 2: Strike Slip Fault Stress Regime

Analysis with STABView software
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The Effect of the In-Situ Stress State and Injection 
Pressure Gradient on Fault Re-activation

Case 3: Thrust Fault Stress Regime

Analysis with STABView software
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Key Observation
Under initial conditions, 
prior to stimulation,  there 
are several fractures that are 
at or close to being critical 
stressed

Mohr Circle Representation of Critically Stressed Natural 
Fractures from a Montney Horizontal Well, Farrell Ck Field

Better 
representation 
of frictional 
properties of 
discontinuities 
from lab tests

Rogers, S., McLellan , P., Webb, G., Investigation of the Effects of Natural Fractures and Faults on Hydraulic Fracturing in the Montney 
Formation, Farrell Creek Gas Field, British Columbia, DFNE 2014 - 224 , Vancouver, BC, October, 2014.
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Reservoir Pressure (14‐20 MPa)

Tornado Chart Sensitivity of the Predicted Minimum 
Injection Pressure Gradient to Cause Fault Slip
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26 NRCan Recorded Earthquakes Greater than ML2.0
in the Farrell Ck - Altares Area, July 2010-June 2014
(excluding suspected Wastewater Disposal Events)
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Take Away Points

• For deterministic fault predictions simple slip-on-a-plane models are a 
useful starting point to understand the problem and the most 
important causal factors

• Horizontal in-situ stress differences drive the fault re-activation 
problem in typical overpressured strike-slip fault stress regimes in 
NEBC

• There are rare cases where low angle bedding planes can be inflated 
and sheared during hydraulic fracture operations in thrust fault stress 
regimes where 3 = Sv

• DFIT-derived Fracture Closure Pressure (FCP) or SHmin are needed 
for first-order predictions of fault slip

• For a known seismic derived fault geometry the relative importance of 
the input data is summarized as:

Stresses > Fault Properties > BHP > Elastic Properties
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