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Constrained three parameter AVO inversion and uncertainty analysis
Jonathan E. Downton*, Scott Pickford / University of Calgary,

and Laurence R. Lines, University of Calgary

Summary

Bayes� theorem is used to derive a 3 parameter non-linear AVO

inversion.  Geologic constraints based on available well control

or rock physical relationships are incorporated to help stabilize

the solution.  Parameter uncertainty estimates arise naturally as

part of the derivation and provide estimates of the reliability of

the different parameters.  The resulting parameter and

uncertainty estimates may be transformed to a variety of elastic

and rock physical AVO attributes popular in the literature using a

transform matrix.

Introduction

The elastic parameters may be estimated, using a linearized

approximation of the Zoeppritz equation such as Aki and

Richards (1980)
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where r is the angle dependent reflectivity. The parameters �, �,

, � respectively are the average p-wave velocity, s-wave

velocity, density and the ratio of S-velocity to P-velocity across

the interface.  The variable � is the average angle of incidence

and ��, ��, � are the change in p-wave velocity, s-wave

velocity and density.  Equation 1 may be written in matrix form

Gm=d where G is the linear operator, m the unknown parameter

vector containing the velocity and density reflectivity
T]/,/,/[ ������ ���  and d the input data vector (offset

dependent reflectivity).

In practice, equation (1) is rarely inverted for.  For conventional

acquisition geometries and noise levels, equation (1) is ill-

conditioned.  That is, a small amount of noise will result in large

parameter deviations.  This problem becomes worse as the

range of angles used in the inversion becomes smaller. Various

authors (Shuey (1985), Smith and Gidlow (1987), and Fatti et al

(1994), among others) rearrange equation (1) to solve for other

parameterizations.  In implementing these schemes, hard

constraints are usually implemented either explicitly or implicitly

to improve the stability of the problem.  Smith and Gidlow (1987)

use the Gardner equation (Gardner et al., 1973) to remove the

density reflectivity thus improving the stability of the problem.

The Shuey and Fatti equations are generally both solved using

only the first two terms implicitly constraining the 3rd term�s

reflectivity to zero.

Rather than using hard constraints, this paper uses soft

constraints from the well control or from rock physical

relationships.  The degree to which the constraint influences the

solution is dependent on the signal to noise level of the data and

the acquisition geometry.  In the case of good signal-to-noise

data and a large angle range, the constraints only influence the

solution in a minor way.  Under these conditions the density

reflectivity might be reliably solved for.  For poor signal to noise

ratio data or a data with limited angle range the constraints will

dominate the solution.  Parameter estimates will have greater

uncertainty and quality control displays must be relied upon to

determine if the estimate is useable (Downton et al, 2000)

Bayes� theorem provides a convenient theoretical framework to

do this.   This paper first reviews Bayes� theorem, the Likelihood

function, and the prior constraints.  It is shown how well control

or rock physical relationships can be used to construct a prior

probability function.  Then, by combining the Likelihood function

and the a prior probability function, a non-linear inversion

algorithm is derived.  Next, the reliability of the estimates is

discussed.  It is shown that the parameter estimate and

uncertainty can be transformed to other AVO attributes that

might be more suitable to interpret the data.  Lastly, the

algorithm is demonstrated on synthetic seismic data.

Theory

Bayesian Inversion

Bayes� theorem provides a theoretical framework to make

probabilistic estimates of the unknown parameters m from

uncertain data and a priori information.  The resulting

probabilistic parameter estimates are called the Posterior

Probability Distribution function (PDF).  The PDF written as

P(m|d,I) symbolically indicates the probability of the parameter

vector m given the data vector d (offset dependent reflectivity)

and information I.  Bayes� theorem
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calculates the PDF from the likelihood function P(d|m,I) and

a priori probability function P(m|I).  The denominator P(d|I) is a

normalization function which may be ignored if only the shape of

the PDF is of interest

).|(),(),( IPIPIP mm|dd|m 
 (3)

The most likely estimate occurs at the maximum of the PDF.

The uncertainty of the parameter estimate is proportional to the

width of the PDF.
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Likelihood function

If we assume uniform uncorrelated Gaussian noise then the

likelihood function may be written as  (Sivia, 1996)
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where �2 is the variance of the noise.  In the case of uniform

priors, Bayesian inversion is equivalent to maximum likelihood

inversion.

For AVO inversion, because of the small number of parameters

solved for, it is possible to visualize the PDF.  If the parameter

vector m had only one element, the PDF would be a Gaussian

function.  If the parameter vector m had two elements, the PDF

would be a bivariate Gaussian function and an equiprobable

solution would be an ellipse.  For the case of AVO inversion,

where there are 3 parameters, the PDF is a multivariate

Gaussian function where an equiprobable solution is an ellipsoid.

Typically the ellipsoid is quite elongated along the density

reflectivity axis.  The solutions are non-physical when the

reflectivity is greater than 1.

A priori constraints

One way to reduce the uncertainty is to impose constraints on

the solution.  For example, non-physical solutions can be

excluded from the solution space.  This can be written in terms

of a probability distribution where physical solutions are

equiprobable and non-physical solutions given zero probability.

It is not necessarily desirable to assign uniform probabilities over

the range of physically valid reflectivity.  The stratigraphic

sequence is a result of cyclic geologic processes that result in

reflectivity probability functions, which may be reasonably

described by common probability functions.  The normal

distribution was found to reasonably describe the statistics of

logs for this work in Western Canada.  Other probability

functions may be used if appropriate, but for this paper the

normal probability function is used.  The joint probability

distribution for the P-velocity, S-velocity and density reflectivity

is the multi-variate Gaussian distribution that is parameterized

by a covariance matrix.  The diagonal elements of the

covariance matrix are the variances of the P-velocity, S-velocity

and density reflectivity.  The off-diagonal elements describe how

correlated the P-velocity, S-velocity and density reflectivity are.

From rock physics studies it has been empirically observed that

the P-velocity, S-velocity and density are correlated.  The

mudrock relationship (Castagna et al, 1985) provides a

relationship linking P-velocity and S-velocity reflectivity,

R
Vs
=mR

Vp
. The Gardner relationship (Gardner et al, 1973)

provides a relationship between the P-velocity and density

reflectivity, R
d
=gR

Vp
.  Potter and Stewart (1998) observed a

similar relationship between S-velocity and density reflectivity,

R
d
=fR

Vs
.  These parameters and their correlation coefficients r

1
, r

2

and r
3
 can be calculated from the local well control.  From this

the parameter covariance matrix C
m
 , which defines the multi-

variate Gaussian distribution can be constructed.
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In practice it is more efficient to calculate this directly from the

sample statistics, but the proceeding analysis provides physical

significance to each of the terms in the parameter covariance

matrix.  In addition, in areas with limited well control or missing

information, published values may be used to help construct the

covariance matrix.

The resulting a priori probability function is the multi-variate

Gaussian probability function
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where � a global scale factor to account for the arbitrary scaling

of the seismic data.

Nonlinear inversion

The Likelihood function (equation 4) may be combined with the a

priori probability function (equation 6) using Bayes� Theorem

equation (3).  Since there is no explicit interest in the variance

��or the scalar���� both are marginalized (Sivia, 1996).  The

most likely solution can then be found by finding where the

probability function is stationary.  This involves taking the partial

derivatives with respect to each parameter, setting the result to

zero and solving the set of simultaneous equations.  This results

in the nonlinear equation

� �
,

1

2
1

1 dGC
��

GGm T
m

T
T

QN

�

�
�
�

�
�
�

�

�
	


                  
(7)

where �=Gm-d and mCm 1�
 m
TQ .  The equation is weakly

nonlinear and can be solved in an iterative fashion using

Newton-Raphson. The term �T� is an estimate of the RMS

energy of the noise and Q the RMS energy of the signal.  The

ratio is therefore an estimate of the N/S ratio.   The ratio acts as

a weighting factor determining how much the prior constraints

influence the solution.  If the S/N is large, then the weighting

factor is small and the constraints add little to the solution and

vice versa.

Uncertainty analysis

The uncertainty of the parameter estimate is related to the width

of the distribution.  This can be calculated from the 2nd

derivative evaluated at the parameter estimate.  With the

assumption of uniform uncorrelated Gaussian noise the

uncertainty is described by the covariance matrix
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The diagonal of the covariance matrix represents the variance of

each parameter estimate.  The off-diagonal element represents

the degree of correlation between the errors. (Downton et al.,

2000)

It is also important to understand how much the constraints are

influencing the solution.  The uncertainty can also be calculated

if the constraints were not included.   The ratio of these two

uncertainty estimates give a sense for how much of the solution

is coming from the data and how much from prior knowledge.

To make accurate predictions about the subsurface the

parameter estimate of interest should be largely coming from

the data.

Transform matrix

In this paper the P-velocity, S-velocity and density reflectivity are

estimated.  In the literature, equation (1) has be rearranged to

solve for impedance reflectivity (Fatti et al, 1994), Lame

reflectivity (Gray et al, 1999), geometric parameters A,B,C

(Shuey, 1985) and many others.  This being the case, it is simple

to construct a transform matrix to transform from velocity

reflectivity to any of these other attributes Tmm 
'  where T is

the transform matrix and 'm  is the new parameter set.  The

parameter uncertainty covariance matrix can also be

transformed by 
T

mm TTCC 
'
.  In this way different AVO

attributes can be examined to see how they show off some

particular geologic feature or anomaly.  An attribute can be

selected which highlights the objective the best.  Of equal

importance, the reliability of each of these attributes can also be

examined to understand whether the anomaly is reliable or an

artifact due to the noise.

Example

The method has been tested on both synthetic and real data.

The synthetic data was generated based on two wells from

Western Canada.  Synthetic gathers were generated with a

variety of different acquisition geometries to understand how the

inversion would react to changes in fold, angle range and signal

to noise.  The constraints were constructed based on a

composite of logs in each area.  The results of the constrained

inversion were transformed to impedance reflectivity and

compared to the results of the 2 term Fatti equation.  The results

of the constrained S-impedance inversion were superior or equal

to that of the 2 term Fatti equation.  For high signal to noise

levels (greater than 8 to 1) and large angle ranges (greater than

30 degrees) the inversion was able to predict the density

reflectivity for some markers (Figure 1).  These markers were

significant in that the P-velocity and S-velocity were

uncorrelated with the density so the prediction is coming from

the data.

Figure 1:  Comparison of density estimate from 3 term AVO

inversion (top) and ideal synthetic (bottom) for AVO inversions on

data with different angle ranges and S/N ratios.  Note for high

S/N ratios and large angle ranges it is possible to estimate the

density reliably.

Conclusions

We have demonstrated a 3 parameter AVO inversion using soft

constraints.  The degree to which the constraints influence the

solution is a function of the signal-to-noise ratio of the data.  The

constraints preferably should be calculated from local well

control.  If local well control is not available, values from the

literature may be used.  Velocity and density reflectivity are

solved for, but can be transformed subsequently to virtually any

other AVO attribute.  Parameter uncertainty estimates are

provided as part of the derivation and should be examined to

determine the significance and reliability of a particular AVO

attribute.  This is particularly true of the density reflectivity.

Density reflectivity may be reliably estimated for data with little

noise and large angle range.

The results of the 3 term constrained AVO inversion are

equivalent to the Smith and Gidlow AVO inversion if the a priori

constraints define the density reflectivity as a linear function of

the P-velocity reflectivity.  Similarly, the results of the inversion

are equivalent to the two term Fatti equation (Fatti et al, 1994) if

the a priori information specifies the density reflectivity is zero.

Lastly the three term AVO inversion is equivalent to the two term

Shuey equation with the a priori constraint that the velocity

reflectivity is zero.  By choosing constraints based on local well

control, honoring known rock physical relationships, and

weighting the constraints based on the needs of the data, the

results of the constrained 3 parameter AVO inversion should be

more accurate than the aforementioned methods.
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