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Paul J. Fowler* and Steve Schroeder, WesternGeco, Denver, Colorado

Summary

Obtaining optimal migrated images from land data acquired in
rugged terrain requires accurate correction for topographic
relief.  Wave-equation datuming to a flat reference surface
before migration is significantly more accurate than static time
shifting.  Since the replacement velocity used for topographic
datuming is usually laterally invariant, it is possible to design
hybrid datuming algorithms that are both highly accurate and
efficient.  These datuming schemes can also be used for marine
water-layer replacement.

Introduction

As migration algorithms improve, it is increasingly important to
ensure high fidelity and efficiency in all processing steps applied
prior to imaging.  For seismic data acquired in areas with rugged
terrain, imperfect treatment of surface topography can
significantly degrade the quality of the final migrated image of
the subsurface.  Accurate datuming algorithms can help solve
this problem.

Datuming for land data is used primarily to address two types of
problems: topographic relief, and complex, heterogeneous near-
surface layers. Ideally, one might want to apply datuming before
stack to solve both types of problems. Some success has been
reported in applying prestack datuming to 2-D data (e.g.,
Schneider et al., 1995; Bevc, 1997; Zhu et al., 1999).  However,
accurate and efficient prestack wavefield extrapolation in 3-D is
much more problematic because of the coarse and irregular
spatial sampling typical of 3-D data acquisition.  Therefore,
poststack datuming is much more common in practice.

Datuming through highly heterogeneous near-surface layers
requires an algorithm that can accurately handle rapid lateral
velocity variations.  Such methods are computationally
expensive, and it is an open question whether we can estimate
near-surface velocities well enough to justify wave-equation
datuming instead of applying cheaper and more robust static
shifts (Salinas, 1996).  Topographic relief, however, is usually
handled by datuming upward using a laterally invariant velocity
field.  The simplicity of the velocity field can be exploited to
implement a datuming scheme that is computationally more
efficient than one that handles more complicated velocity fields.
Thus, we focus here on efficient methods for poststack
topographic datuming.

Some form of topographic datuming is nearly always applied
either before or during migration of land data if any relief is
present. Kirchhoff migration algorithms can directly handle data
from topographic surfaces (Wiggins, 1984). Finite-difference
methods can also be extended to include topography by using
zero-velocity layers (Beasley and Lynn, 1992).  However,
incorporating topography in some wavenumber-domain methods
(e.g., Beasley et al., 1988) is intrinsically more difficult. A
separate, prior datuming step can provide a consistent and
accurate solution to the handling of topography independent of
the method used for subsequent migration.

The importance of topographic datuming

The most common approach to topographic datuming for land
data is to extrapolate upward to a flat reference surface above
the highest topographic point, using a replacement velocity
roughly equal to the shallow sediment velocities.  This is often
implemented using simple static time shifts, but such an
approach can cause significant vertical and lateral reflector
positioning errors.  These errors are most severe for large
topographic relief and steep dips. A more accurate approach is
to extrapolate the data using wave-equation methods.

Figures 1 to 5 illustrate the importance of accurate wave-
equation datuming for a simple synthetic data example.  Figure
1 shows a model containing a point diffractor and several
reflectors below a dipping and undulating topographic surface.
Figure 2 shows simulated zero-offset data from the topographic
surface.  Figure 3 shows the result of wave-equation datuming
upward to a flat surface, followed by steep-dip migration.  The
flat and dipping reflectors and the isolated point scatterer are all
imaged well.  For comparison, Figure 4 shows the result of
datuming using static time shifts, followed by the same
migration.  The dipping reflectors are now mispositioned, and
the point scatterer is poorly focused.  The apparent
overmigration of the scatterer can be partially fixed by arbitrarily
decreasing the migration velocity by 15%, as shown in Figure 5.
However, the dipping beds are still seriously mispositioned.
Although such ad hoc adjustments of the migration velocity are
often made during routine processing, they can never fully
compensate for the errors incurred by using static datuming.
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Figure 1: Model with topography

Figure 2: Synthetic data from topography

Figure 3: Migration after wave-equation datuming

Figure 4: Migration after static time-shift datuming

Figure 5: Migration with an incorrect, low velocity after static
time-shift datuming

Wave-equation datuming methods

Basic integral equations for Kirchhoff datuming were presented
by Berryhill (1979), Wiggins (1984), and  Shtivelman and
Canning (1988). The Kirchhoff extrapolation integral can be
expressed in either the time or frequency domain.  We use the
latter because it can more easily and accurately incorporate the
near-field terms, the differentiation filters, and the anti-aliasing
filters that are all needed for high-accuracy datuming.  The only
significant approximation made is that of limited curvature on
the topographic surfaces.

Non-recursive Kirchhoff datuming handles topography and data-
sampling irregularity quite flexibly, and via ray tracing can be
generalized to handle varying velocity fields.  However, it can be
costly to apply, particularly for large topographic relief.  The cost
of Kirchhoff datuming can be reduced somewhat by limiting the
aperture of the extrapolation operators, since handling steep
dips costs far more than lower dips.  Other speedups, such as
using cheaper approximations for weighting or for anti-aliasing,
can compromise the accuracy of the result.  Even using an
efficient implementation, non-recursive Kirchhoff datuming can
still cost as much or more than subsequent migration, raising a
serious barrier to its routine use.  A less computationally
expensive solution is thus desirable.

Recursive extrapolation using frequency-space (f-x) operators
provides an alternative to non-recursive Kirchhoff datuming (Ellis
and Kitchenside, 1989).  Topography on the initial surface can be
handled by starting with a wavefield that is all zeroes, and then
adding in the recorded data at each extrapolation step as one
crosses the surface.  Topography on the output surface can be
treated similarly, by separately saving the wavefield values as
this second horizon is reached.  Similar treatments of
topography in recursive extrapolation were also used for
datuming by Yang et al. (1999) and MacKay (1994), and for
depth migration by Reshef (1991).  Recursive frequency-space
extrapolation operators can be designed by using finite-
difference approximations, by discretizing the Kirchhoff integral
solution, or perhaps best, by optimal fitting of coefficients to the
desired frequency-wavenumber extrapolator, as is commonly
done for depth migration programs (e.g., Holberg, 1988;
Blacquiere et al., 1989; Hale, 1991; Gaiser, 1994). Whatever
method is used to design recursive f-x extrapolation operators,
great care must be taken to preserve both stability and steep-
dip accuracy. The recursive f-x approach is suitable for datuming
through laterally varying velocity models, but unfortunately it is
still comparatively expensive to apply. The lateral invariance of
the velocity field used for topographic datuming can still be
exploited to generate methods that are computationally less
expensive.

Recursive frequency-wavenumber (f-k) phase-shift extrapolators
provide very accurate and efficient solutions for datuming when
the velocity is laterally invariant and the topography is flat.  They
can incorporate topography using essentially the same
technique as for recursive f-x methods, by initiating the
wavefield as the extrapolation crosses the first surface and
saving new wavefield values as the second surface is reached
(Ji and Claerbout, 1992). Since the extrapolation operators are
applied via wavenumber-domain multiplication rather than by
spatial convolution, they can be computationally very efficient.
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Handling topographic relief does incur the extra cost of
additional spatial Fourier transforms between domains at each
depth step.  However, the method can still be less expensive
than space-domain methods, without the potential stability or
accuracy problems of the latter.

The cost of recursive f-k datuming depends directly on the size
of the depth step used.  Using too large a step is equivalent to
approximating the smoothly varying topographic surfaces by a
series of discrete steps, thus degrading accuracy.  This
inaccuracy becomes visible when the depth step (converted to
time units) becomes much larger than the time-sampling
increment of the data. Larger depth steps can be used for lower
frequencies, which can decrease the computational cost without
damaging the result.  However, for datuming large distances the
cost of the many spatial Fourier transforms still remains greater
than desired.

A fast hybrid datuming algorithm

A hybrid approach working alternately in wavenumber and
space domains can run much faster than either approach alone
while still retaining high accuracy.  In this approach, we use f-k
extrapolation to take large depth steps, and then use smaller,
localized f-x extrapolators to handle topography as needed.  This
hybrid approach has the immediate advantage that only the f-k
operators are applied recursively, so stability of the f-x operators
is not a problem. The f-x operators will be small in size because
they only have to extrapolate short distances, but they do have
to be highly accurate so that they closely match the f-k

operators.

The total cost of the f-k steps decreases as the step size gets
larger.  The cost of applying the f-x operators, however,
increases with larger step size as the required aperture grows.
The computational cost of this scheme therefore reflects a
tradeoff between these two costs as step size increases. The
optimum step size is usually many times larger than that used
for the f-k method and the runtimes are correspondingly less.
The actual minimum is a complicated function of many
parameters, including survey size, time-sampling rate, bin size,
replacement velocity, total datuming distance, and maximum dip
limit. We have found in practice, though, that the tradeoff curve
is usually quite flat in the region of the minimum, so enhanced
performance can be achieved without excessive sensitivity to
the precise choice of step size.

Figure 6: Measured cost tradeoff curve for hybrid datuming.

Figure 6 shows an example of a measured cost tradeoff curve
for using the hybrid datuming algorithm on a 3-D field data set
approximately 60 square kilometers in extent.  The data were
acquired in a rugged, mountainous region; the maximum
datuming distance from topography up to a flat migration
horizon was over 600 meters.  Non-recursive f-x Kirchhoff
datuming of this data set required 1.7 times the CPU time
needed for a poststack time migration. Recursive f-k datuming
using a fixed step size corresponding to the data time-sampling
increment, �t, reduced the relative run-time factor to 1.2
compared to time migration.  Allowing the step size to vary
inversely with frequency improved this further to a factor of 1.1.
As can be seen in Figure 6, the optimal step size for the hybrid
algorithm for this data set was approximately 20�t, giving a run-
time factor of 0.32.  However, using any step size between 10�t
and 30�t gave run-time factors of 0.34 or less. For comparison,
a high-accuracy recursive f-x poststack depth migration took
approximately 11 times as long as the time migration.  All timing
tests were run with a 75� dip aperture, and with all other
parameters chosen to ensure high fidelity.  The results for all the
datuming methods were of nearly identical high quality.  The
hybrid scheme thus achieved the goal of reducing the datuming
run time to a fraction of the migration run time, while still
retaining high accuracy.

Discussion and conclusions

The new hybrid space/wavenumber datuming algorithm
described here provides an efficient and accurate
implementation of poststack topographic datuming.  It reduces
computational costs sufficiently that it can replace static time-
shift datuming in routine production processing, thus potentially
improving the accuracy of any subsequent migration.  It does
require a laterally invariant replacement velocity, and works best
for a constant velocity where many numerical factors can be
precomputed and tabulated.  The only other limitation is that
computational efficiency is lost for dips beyond approximately
80�, since the required aperture of the f-x operators becomes
too large.  If high accuracy datuming of the very steepest dips is
required, the f-k algorithm is appropriate and will still usually be
faster than a Kirchhoff approach.
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We have focused here on topographic datuming for land data,
but the efficient datuming algorithms we have discussed can
also be applied for marine water-layer replacement (Yilmaz and
Lucas, 1986).  In that case, one tries to lessen the effects of
seafloor topography by extrapolating at water velocity down
from the ocean surface to the seafloor, and then back up to the
surface with a faster replacement velocity.  To be most useful,
this requires a hard seafloor with a jump to a sediment velocity
significantly higher than water velocity, so this use of datuming
to ameliorate topographic effects is less common than for land
data.
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