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Summary
In complex media, raypaths and their associated traveltimes can be calculated by parameterizing the raypath parameter and using the
principle of stationary traveltime (e.g., Epstein and Niatycki, 1992; Hanyga, 1996). A raypath parameter is a conserved quantity resulting
from the symmetry of the velocity field. In an anisotropic, nonuniform

1
 continuum, each and every point within this field can be described by

an elementary wavefront - a closed curve in the infinitesimal neighbourhood of a virtual point source. A function that describes all
elementary wavefronts is given by a metric of the associated geometry. For instance, the case where all elementary wavefronts of varying
sizes, shapes and orientations are elliptical is described by a Riemannian metric. For more complicated elementary wavefronts, one uses a
generalization of Riemannian geometry, namely, Finslerian geometry. A set of all elementary wavefronts defines the velocity field within
which one computes the raypaths.

Introduction
Raypaths and their associated traveltimes in anisotropic, nonuniform media can be calculated by considering the stationarity of traveltime
and a symmetry of the velocity field (e.g., Epstein and Slawinski, 1999). The calculus of variations (e.g., Slawinski and Webster, 1999) when
combined with differential geometry (e.g., Ingarden, 1996), allows one to achieve such a formulation. The traveltime between the source
and the receiver is given by the stationarity of a definite integral whose integrand is the ratio of a distance element and the velocity along
this element, namely,
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where t is the parameter along the raypath and F denotes the integrand of the traveltime integral.

Theory and method
In two-dimensional media, illustrated by an xz-plane, the raypath that results in a stationary traveltime must satisfy two Euler equations in
terms of x(t) and z(t), namely
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1 In this presentation, the term (non)uniformity is used to describe (in)homogeneity of a physical property of a medium since the latter term
is used to characterize a mathematical property of a function. Also, such a nomenclature is correct in the context of continuum mechanics
(e.g., Epstein and Slawinski, 1998).
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(e.g., Morse and Feshbach , 1953). In general, considering perfectly elastic, anisotropic, nonuniform media, the traveltime integrand is a
function of five arguments, namely, F(x,z,dx/dt,dz/dt;t). In horizontally layered media, the velocity function is invariant to the horizontal
translation, and the traveltime integrand becomes a function of four arguments, namely, F(z,dx/dt,dz/dt;t). In accordance with Noether’s
theorem, this symmetry results in a conserved quantity (e.g., Goldstein, 1950), which, in geometrical optics, constitutes the raypath
parameter (e.g., Kravtsov and Orlov, 1990), and, in the calculus of variations, is the first integral of the Euler equation (2), given by
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Consequently, this second-order differential equation (2) becomes a first-order equation (4).

An anisotropic, nonuniform medium can be described by associating its every point with an elementary wavefront (e.g., Arnold, 1989). In
other words, at each point, there is a tangent space whose local coordinates depend on direction only. This allows one to account for the
nonuniformity and anisotropy of the continuum while allowing one to view the medium, in the infinitesimal neighbourhood of every point, as
locally uniform. Thus, the velocity of a signal at a given point depends on the propagation direction only. Hence, the velocity function is
homogeneous of degree zero in dx/dt and dz/dt, which results in the traveltime integrand being absolutely homogeneous of degree one in
the same arguments, namely,
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From Euler's homogeneous-function theorem, it follows that
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Also, the Euler equations (2) and (3) imply the Beltrami identity
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Thus, due to the homogeneity of the function and in view of expression (6), the Euler identity (7) implies that the integrand cannot explicitly
depend on the parameter t; hence, it becomes a function of three variables, namely, F(z,dx/dt,dz/dt). Also, due to the homogeneity, and since
tanθ = dx/dz, where θ is the ray angle, one can write the integrand as a function of two independent variables, namely, F(z,tanθ,1).
Furthermore, for perfectly elastic media, the Beltrami identity (7) combined with Euler’s homogeneous-function theorem (6) implies that the
Euler equation (3) is identically satisfied. As a result, and in view of the symmetry along x, the system of equations (2) and (3) is reduced to a
single equation (4).

Consequently, the raypath parameter is a level curve of the surface spanned by z and tanθ. The raypath parameter can be solved for tanθ.
Then, one can integrate this solution to get a raypath [x,z]. Subsequently, one can compute the traveltime by integrating F along this raypath
between the source and the receiver.

Example
The properties of a medium allow one to determine the elementary wavefront, which is the indicatrix of the associated geometry. For
elliptically anisotropic media such a geometry is provided by a Riemannian metric. Let the traveltime integral be
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where, as indicated by metric coefficients, gij(z), the properties of the medium do not change along the x-axis. However, any angular or
positional dependence along the z-axis can be accommodated. In view of the symmetry along the x-axis, one has a raypath parameter (4).
Letting F be the integrand of the traveltime integral (8), one obtains
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Thus, the raypath parameter, p, is the level curve on surface spanned by z and tanθ. Rearranging expression (9), one obtains a quadratic
expression for tanθ, namely,
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Equation (10) can be solved for tanθ. Subsequently, integration of this solution gives the raypath.

In a particular case of isotropy, where gxz = 0, while gxx = gzz = 1/V2, elementary wavefronts are indicatrices of Euclidean geometry. In this
case, the integration of solution of equation (10) results in a familiar expression
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In a more general case, where elementary wavefronts are complicated closed curves, one can invoke the Finslerian manifold where the
angular velocity dependence is described by a locally Minkowskian tangent space.
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