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Modeling the Seismic Wavelet with Model-based Wavelet Processing
Douglas I. Hart, Bruce W. Hootman, and Alex Jackson, WesternGeco, Denver, Colorado

Summary
Model-based Wavelet Processing is a technique for modeling the
seismic wavelet.  However, it is more than a wavelet modeling
technique since it explicitly includes terms that account for
random noise in the data.  As a result, Model-based Wavelet
Processing can account for the effects of noise on predictive
deconvolution.  Using the model of the deconvolved seismic
wavelet one can derive a filter that will shape the wavelet to
zero phase.

Introduction
Connelly and Hart (1985) introduced a technique to model the
seismic wavelet that they called Model-based Wavelet
Processing or MBWP.  The core notions of the MBWP technique
are a set of convolutional models aimed at analyzing the
components of a seismic acquisition system and the processing
applied to the data.  These models not only contain components
of the seismic wavelet, but also contain information about the
noise in the data.  As such they can account for the degrading
impact of noise on predictive deconvolution.  Additionally, it is
possible to account for the effects of non-white reflectivity and
non-white noise on predictive deconvolution using these
modeling techniques.

In this paper we describe the MBWP modeling technique and
discuss the procedures one might use to verify that the model
produces an accurate estimate of the seismic wavelet.
Furthermore we show how to accurately determine the
parameters (a Q value and a signal-to-noise ratio) for the MBWP
model using a nonlinear, least-squares technique.  Since these
parameter estimates are derived trace-by-trace, it is possible to
produce map displays of the values of these parameters for a 3-
D seismic survey.

The MBWP Technique
Figure 1 contains a schematic representation of the components
in the seismic experiment that form the basis of the MBWP
model of the seismic trace. The procedure starts with a seismic
source, S(t).  This source propagates to acoustic impedance
interfaces in the earth and is reflected back to a detector.
Denote the reflectivity of the earth as R(t).  During propagation
between the source and detector the seismic wavelet undergoes
Q-like absorption, which is denoted as Q(t).  At the detector, both
the signal from the earth and noise, N(t), are received and
filtered with its response, D(t).  The signal and noise recorded by
the detector are then filtered by the instrumentation in the field,
whose response is I(t).  Combining these terms, as shown in
Figure 1, produces the MBWP model of the seismic trace, x(t),
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Figure 1. A schematic representation of the seismic experiment.
The resulting convolutional model forms the basis of MBWP.

Using Equation 1, one can directly account for the effects of
non-minimum-phase or mixed-phase components in the
seismic acquisition system.  In particular, mixed-phase sources
can be directly modeled.  Also, random noise is a fundamental
part of the MBWP model.

By carrying out the convolutions in Equation 1 the MBWP model
can also be written as
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or more compactly as

( ) ( ) ( ) ( ) ( )s s n nx t W t R t W t N tσ σ= ∗ + ∗            (3)

Here σs and σn are the strength of the signal and noise,
respectively.  Ws(t) is the seismic wavelet:  the collection of
terms convolved with the earth’s reflectivity. Wn(t) includes the
effects of filtering the noise in the seismic data with the field
instrumentation.

Modeling the seismic wavelet with MBWP
In the convolutional model, by definition, the seismic wavelet is
what is convolved with the reflectivity function. For the MBWP
model in Equation 2 the seismic wavelet is
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This model contains terms for the source, detector, and
instrument that are either accurately modeled or are recorded in
the field.  They represent deterministic components of the
wavelet and consequently the model may contain any of their
mixed-phase characteristics.  Absorption is explicitly included
with its frequency-decay of amplitude and its minimum-phase
filtering action.

Verifying the MBWP model of the seismic wavelet
The wavelet in seismic data is generally difficult to directly
observe.  However, three procedures for confirming the MBWP
models of the seismic wavelet exist.  First, one can compute
models for different acquisition systems and use the models to
design filters that shape the wavelet in the data to zero phase.
Comparisons of data from the two acquisition systems at
overlapping CMP locations can indirectly verify whether the
MBWP model of the seismic data is correct.  Hootman and Hart
(1998) discuss this procedure for processing mixed-source 3-D
seismic surveys.  Additionally, one can compare synthetic
seismograms to data whose phase has been corrected using the
MBWP technique.

A more direct observation of the seismic wavelet is the first
arrival in a VSP experiment.  Figure 2 shows a comparison of
MBWP models of the seismic wavelet with a dynamite source,
shown as the solid blue line, with the first arrival, shown as a
dashed red line, for four separate dynamite sources.   There is
good agreement between the MBWP model of the wavelet,
especially at the earlier times.

Figure 2: MBWP models of the seismic wavelet for dynamite
acquisition, shown as the solid blue line, overlain on the first
arrival from a dynamite source in a VSP experiment, the dashed
red line.

Figure 3 is the same type of comparison except with MBWP
models that contain a Vibroseis source and the VSP data
recorded from four different Vibroseis sources.  Again, there is
good agreement between the model of the seismic wavelet and
the VSP first arrival.

Figure 3: MBWP models of the seismic wavelet for Vibroseis
acquisition, shown as the solid blue line, overlain on the first
arrival from a Vibroseis source in a VSP experiment, the dashed
red line.

Modeling predictive deconvolution of noisy data
Conventional predictive deconvolution assumes that the
reflectivity of the earth is statistically white and that the data
contain no noise.   It also assumes that the seismic wavelet is
minimum phase. Using the MBWP technique it is possible to
examine the consequences of violating these assumptions.

The predictive deconvolution operator directly depends on the
autocorrelation of the seismic data trace.  The MBWP model of
the seismic data trace in Equation 3 contains two terms: a signal
term and a noise term.  Assuming that the reflectivity and the
noise are uncorrelated and white, the autocorrelation of the
MBWP model, ( )x τR , is

2 2( ) ( ) ( )x s s n nτ σ τ σ τ= +R R R                    (4)

The autocorrelation of the MBWP model contains two terms, an
autocorrelation of the model seismic wavelet and an
autocorrelation of the filtered noise. A result of assuming that
the reflectivity and noise are white is that these two
autocorrelations can be thought of as the autocorrelation of the
signal and the autocorrelation of the noise in the seismic data.
These autocorrelation functions are scaled by the strength of the
signal and noise, or signal-to-noise ratio, in the data.

As an example, Figure 4 shows an autocorrelation function for a
seismic wavelet and its spectrum. Similarly, Figure 5 shows an
autocorrelation function for the filtered noise and its spectrum.
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Figure 4: The autocorrelation and spectrum of the MBWP model
of the signal.

Figure 5: The autocorrelation and spectrum of the MBWP model
of the noise.

The signal and noise autocorrelation functions are then scaled to
match the signal-to-noise ratio in the data prior to adding them
together to form a model of the autocorrelation of the seismic
data trace.  Figure 6 shows how the normalization is done.  For
this case, the level of the signal and noise is chosen so that
signal is 12 dB higher than the noise at 40 Hz.

Figure 6: The spectra of the signal autocorrelation (solid blue)
and the noise autocorrelation (dashed red.) normalized so that
there is a 12 dB signal-to-noise ratio at 40 Hz.

Figure 7 shows the autocorrelation function that results from
adding the signal and noise autocorrelation functions and its
spectrum.

Figure 7: The autocorrelation and spectrum of the MBWP model
of the seismic trace, the sum of the signal and noise.

This is the MBWP model of the autocorrelation function and
spectrum that predictive deconvolution sees when deconvolving
the seismic data. It contains both the properties of the signal and
noise. One can use this autocorrelation function to compute a
deconvolution operator.  This deconvolution operator can then be
applied to the MBWP estimate of the seismic wavelet yielding a
model of the wavelet after application of predictive
deconvolution.

Verifying the model of the deconvolved seismic wavelet
Figure 8 shows the deconvolved VSP data from the dynamite
source shown in Figure 2.  It also contains the MBWP model of
the deconvolved seismic wavelet.

Figure 8. MBWP models of the deconvolved seismic wavelet for
dynamite acquisition, shown as the solid blue line, overlain on
the deconvolved first arrival from a dynamite source in a VSP
experiment.  (See Figure 2.)

Figure 9 shows the same comparison except, in this case, the
seismic source is a Vibroseis sweep.

Figure 9. MBWP models of the deconvolved seismic wavelet for
Vibroseis acquisition, shown as the solid blue line, overlain on
the deconvolved first arrival from a Vibroseis source in a VSP
experiment.  (See Figure 3.)
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There is good agreement for both the dynamite and Vibroseis
source deconvolved VSP data and the deconvolved model.  This
is indicative of the ability of the MBWP model to account for the
effects of random noise on predictive deconvolution.

The distorted model wavelet accounts for the effects of
deconvolving a mixed-phase wavelet with additive noise.  The
wavelet model can used to design a residual filter that shapes
the distorted wavelet to zero phase.  Application of the residual
filter to the data after deconvolution drives the wavelet in the
data to zero phase.  It is important to note that this procedure is
done independently for each source of data.  No attempt is made
to statistically match data using crosscorrelation functions.

Estimating parameters for the MBWP model from the data
The MBWP model of the seismic wavelet contains terms that are
defined by the acquisition in the field and a term involving the
amount of absorption in the data.  Typically, absorption is
modeled as an exponential loss of frequency.  The amount of
loss is then determined by a parameter, q.

To model predictive deconvolution using MBWP, one needs to
know the signal-to-noise ratio of the seismic data. Both the
signal-to-noise ratio and the amount of absorption are
parameters in the MBWP procedure that must be determined
before one can compute a model of the deconvolved seismic
wavelet.  The Fourier transform of the MBWP model for the
autocorrelation of the seismic trace, Equation 4, can be written
as

/10 /10
10( ) 10log [10 ( )exp( / ) 10 ( )]s nk k

s nX w q wω ω ω ω= − +

ws contains the terms in the seismic wavelet with the exception
of absorption.  Absorption is explicitly modeled as an exponential
loss of amplitude with frequency and depends on the parameter,
q.  (The “time” of the q estimate is assumed to be at 1 s.) wn

contains the terms in the filtered noise. The terms ks and kn are
used to specify the amount of signal and noise, or indirectly the
signal-to-noise ratio, in the data.  The form of these two
expressions enables them to be interpreted as dB.

Using this form for the MBWP model, it is possible to determine
a q value and the signal-to-noise ratio by fitting the model to the
spectrum of the autocorrelation of the seismic data trace.  Figure
10 shows the result of fitting the model spectrum to the data
spectrum.

Figure 10. MBWP model spectrum in solid blue compared to
trace spectrum in dashed red.  The result of this model fitting
procedure is a q value and a signal-to-noise ratio that produces
a model spectrum that matches the spectrum of the seismic
data.

Although certainly valuable for producing MBWP estimates of
the seismic wavelet, these parameter estimates may be useful
in themselves.  Since the MBWP parameter estimation
procedure is run on a trace-by-trace basis, it is possible to
produce map views showing the amount of absorption and
signal-to-noise ratio in a seismic survey.  Running the parameter
estimation procedure over different time windows in the data
even allows for determination of interval q values.

Conclusions
Model-based wavelet processing is a technique for modeling the
seismic wavelet.  Since the MBWP model accounts for the
effects of additive noise, it can model the degrading effect of
noise on predictive deconvolution.  One technique to verify the
MBWP model of the seismic wavelet is to use it to derive filters
to match the wavelets in mixed-source seismic surveys.
Another means to verify the model wavelet is by comparing
phase corrected data to synthetic seismograms.  Here we
verified the MBWP models of the seismic wavelet by comparing
them to the first arrival in a VSP experiment.  Furthermore we
have shown that how to account for the effects of mixed-phase
wavelets and noise on predictive deconvolution and compared
these models to the deconvolved first arrivals in the VSP
experiment.
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