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Abstract

In order to solve the geophysics inverse problem, the artificial neural networks of Elmen type were trained to extract acoustic parameters
from seismic trace. This type of network offers an advantage of training simplicity by the Backpropagation conjugate gradient algorithm. The
networks behaviour observed on training data is very close to the one observed on test data. The efficiency of these networks is tested with
the noisy data, and the results were very encouraging.
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Introduction

In this work we consider the application of the Artificial Neural Networks (ANN) to solve the inverse problem in seismic, this emergent
technology has demonstrated its applicability in different fields of the science and the engineering. Their development is carried through
methods by which the man try to copy the nature and to replicate fashions of his own reasoning. The use of this technique is motivated by the
fact that the ANN model presents a considerable advantage in systems analysis and design by including a priori available knowledge base
regrouping a perceptual interpretation, an abstraction and a training[1]. When one nearly examines infinite possibilities of application of the
ANN for the resolution of the geophysical problem, it seems very profitable to extract, in a first time, the primitive of training and adaptation.
Possibilities of training and adaptation of the ANN model make it attractive for various applications in seismic as the first arrivals picking,
traces edition, the detection of spikes[6], the filtering of the multiples, the seismic data compression[3]. In this paper we propose to investigate
the use of the ANN model in acoustic parameters extraction from seismic traces. From the training diagram, we derive a certain relation
between the seismic data and acoustic parameters witch well be seen as a non-linear mapping function. Finally, we illustrate the
effectiveness of the ANN model in term of its capacity to approximate the complexity of the geological reality and the noisy data.

Neural network principles

Neural networks are constituted of the elementary neural (‘'agent'") connected between them through the intermediary of weights, that play
the role of synapses. Information is carried by the value of these weights, while the structure of neural network only serves to treat this
information, and to route it toward the output. These elements are inspired by biological nervous systems. the network function is determined
largely by the connections between elements. We can train a neural network to perform a particular function by adjusting the values of the
connections (weights) between elements.

An ANN is constituted generally of three layers. The first is the one of the input, the second is said hidden layer and constitute the cur of the
neural network, the third is the output layer.

The main contribution of the ANN model is twofold. First, it is characterised by a distributed and parallel mode in information processing that
allows us to deal with uncertainties on data and even with local faults in the net structure. Second, because of the cohabitation property of net
agents, it may be possible to realise an approximation of any mapping function.

A neural network operates in two steps. The first step consists of determining its parameters according to a backpropagation conjugate

gradient algorithm witch in fact resume the training process. When its parameters being fixed, we use the obtained structure like a classic
function [4].
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Results and discussion

Synthetic tests and results

In order to extract the acoustic parameters from the seismic traces, we have adopted for net configuration of EIman type (feedback
connection) (Fig.1). The estimated parameters are the velocity, the density and the acoustic impedance. These acoustics properties are used
to generate the synthetic data that are of 70 traces with 501 samples for each trace. The signal used is a Ricker of 25Hz with central
frequency (Fig 2).

We have opted for a Feedback dynamic structure. In order to achieve the network training, we introduce at each iteration a set of tuples
constructed from inputs and desired output. During all experiences the input is the synthetic seismic data (example Shawn in Fig.3), the
output selected is the distribution of the parameter to be estimated. The results obtained are illustrated on Fig. 6. 9.12. We got a satisfactory
performance with a number of iterations variable. In the figures.4,7,10  we represent the output of ANN after the training, we presents him
the seismic section used in the training, these figures are accompanied with the output wanted (Fig.5,8,11). While comparing the output of
network after the training with data used for the calculation of the seismic section, we can notice easily that the network was able to
performer a relation between data and parameters correspond. We chose to test the influence of the geometric shape of the reflector on the
process of training of the ANN. For it one used a geological model constitutes of six layers (five reflectors) (Fig. 13), the results of different
performances are given by the (Fig. 14,15,16). Three tests of training have been achieved with a variable noise percentage The (Fig. 17)
represent the synthetic seismic section with percentage 5% of noise. In the same way, the (Fig. 18) represent the performance gotten after
2100 iterations. We increases the percentage of noise toward 15% (Fig. 19) and 50% (Fig.21), we got the performance given by the
(Fig.20,22). the relatively reduced performances in relation to the ideal case (noise free). The objective of the last synthetic experience phase,
is to test the possibility of generalisation of the use of ANN for the acoustics parameters estimation. To this effect, we achieved the training of
network by a geological model, follows the efficiency of ANN is tested by the use of the synthetic data of another model different of the one
used in training.. Results of this test are given by the (Fig.23,24), in which we represented log of velocity and acoustic impedance respectively
estimated by the network and those used to generate data to the input of the network. results were extensively satisfactory in relation to the
velocity and impedance.

Discussion

Elman neural networks were driven to allow the acoustics parameters evaluation from the seismic traces. In different tests, networks could
establish a non-linear relationship between the seismic trace and parameters having served to the creation of this traces. If one examines the
complexity of this relation established by networks through training processes and adaptation mechanism of this last. In following, we will
explicit the process of the construction of a seismic trace. Let be d(t) double time density function, and v(t) the velocity function; I(t) the one of
the acoustic impedance, and r(t) the reflectivity, w(t) the seismic Ricker-type wavelete, and finally T(t). The seismic trace. the seismic trace is
calculated by the following stages:

e  (alculation of the acoustic impedance
I(O=F1[d(t),v(D)].

F1: d(©), v() —=> 10).

e (Calculation of reflection coefficients r(t)=F2[I(t)].

F2:1(t) —> r(t)

e (alculation of the seismic trace by the convolution of w(t) and r(t) given by the functional F3 as T(t)=F3[w(t), r(t)]

F3 :w(t),r(t) ———=T().

In order to solve the inverse problem consists of carrying up of the seismic trace T(t) to parameters acoustic d(t), v(t) and I(}), it is necessary
to establish the following functional:

e The evaluation of impedance consists of finding the inverse operator of F3 to pass from the seismic trace T(t) to reflectivity r(t), this
problem is known in geophysics as the deconvolution. To solve it is necessary to arrange w(t) or an evaluation of this last. Finally, the
passage from reflectivity to the acoustic impedance distribution makes by the application of the inverse operator of F2 on r(t), this
operation is known integration.
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In the case of the realisation of a training where the input is the seismic traces and the output wanted is the acoustic impedance, the neural
network established a relation non- linear between traces and impedance. This relation is equivalent has the evaluation of the inverse
operators of F3 and F2. In the same way for the case of the density and the velocity as another factor of complexity intervenes, the one of the
evaluation of the inverse operator of F1 after having estimated the inverse of F3 and F2. In the case of noisy data before opting to the
evaluation it is necessary to achieve filtering what has been made at the same time by the network, filtering and evaluation.

Conclusion

In this work the neural networks were driven for the evaluation of acoustics parameters from the seismic trace. Results show that networks
could establish relationship between the trace and the acoustic parameters, thanks to their capacity of approximation, and of adaptation. The
training of network can be considered like a means to synthesise automatically a function generally non-linear (control mapping)[5]. The
obtained results, show that there is no need to use two hidden layers instead only one layer hidden for the complexity of network valued data
by the number of weight used in the architecture of the network. Because neural networks of two hidden layers are more appreciable to
problems of the local minimum during the training. The network of type feedback offers the advantage of a fast, and simple training while
using an algorithm of Backpropagation conjugate gradient of the error. some authors [Carlos,Calderon-Macias and al 2000] use a training by
an hybridised algorithm compound by the Backpropagation and a genetic algorithm. As a fast optimisation method., in the case of the use of a
type network feed forward. The efficiency of network is tested in relation to noisy data and results were extensively satisfactory, in the same
way possibilities of generalisation of their use, because the training makes himself only one time.
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list of figure
Fig.1 Network of Elman type.
Fig.2 The Impulse of Ricker 25HZ.
Fig.3 The synthetic seismic section used in training.
Fig.4 The output of the network after the training.
Fig.5 The logs of impedance exacts used to generate the synthetic data and that
constitute the output wanted of network.
Fig.6 The performance of the training in relation to impedance.
Fig.7 The output of the network after the training in relation to density
Fig.8. The logs of density exacts used to generate the synthetic data.
Fig.9 The performance of the training in relation to density.
Fig.10 The output of the network after the raining in relation to velocity
Fig.11 The logs of velocity exacts used to generate the synthetic data
Fig.12 The performance of the training in relation to velocity
Fig.13 Model of reflectors inclined used in training of ANN.
Fig.14 The performance after the training on the model of the Fig. 13 in relation to the density.
Fig.15 The performance after the training on the model of the Fig. 13 in relation to the impedance..
Fig.17 Synthetic seismic section with 5% of noise.
Fig.18 The performance gotten after the training using data of the Fig.17, in relation to the velocity.
Fig.19 Synthetic seismic section with 15% of noise.
Fig.20 The performance gotten after the training using data of the Fig.19, in relation to the velocity.
Fig.21 Synthetic seismic section with 50% of noise.
Fig.22 The performance gotten after the training using data of the Fig.21, in relation to the velocity.
Fig. 23 Exact impedance Log and the one estimated by ANN
Fig. 24 Exact velocity Log and the one estimated by ANN
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Summary picture of the hard training the models of the Fig.3

ANN The density The velocity Impedance
No of neural in every
layer No of iter performa N of iter perfoma N of iter performa
10 179 7.8510™ 88 6.8910™ 111 1.4010"
. 15 175 1.24 107" 90 8.9810™ 87 4810™
g‘;g‘r??rla’;g’rge" layer 20 185 91910° |74 80110" | 106 49510
30 172 46010™ 71 6.310™ 120 1.810™
40 186 1.910™ 94 528107 84 577107
5-5 225 5.5510™ 172 4.1610™ 167 1.610™
10-10 195 1.88 107 17 3.26 107" 173 35110
10-15 275 1.92910™ 229 3.810" 213 45010
50 168 6.1910™ 87 9.2910™ 81 5110™
Input of ANN Seismic section
Transfer function Linear

Learning algorithm

Backpropagation

Fig.1
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Performance is 0.0851252, Goal is 0
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