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3D seismic data interpolation
Xishuo Wang, Geo-X systems Ltd., Calgary, Canada

Introduction
Conventional 3D seismic pre-stack data is usually gathered to CDP bins of size (∆x,∆y) in (x,y)  space. Traces from shot point (xs ,ys), receiver
point (xr ,yr), and with mid-point  xm=(xs+xr )/2  &  ym=(ys+yr )/2 falling within a bin will be stacked together to generate the stacked trace for
that bin. The underlying assumption for this process is that  the  gathered traces to be stacked  are virtually the same because of the small
size of (∆x,∆y). When the size of bins increases or data has complex structure, the difference among these to-be-stacked traces increases.
It is therefore desirable to generate stacked traces by way of interpolation in order to increase resolution.

Pre-stack data distribution is often less than perfect due to limitations in any particular survey design.  Certain processing steps demand
better data distribution than what is already collected, e.g., AVO analysis requires more uniform offset distribution, and pre-stack migration
works better with densely and regularly distributed gathers. To achieve better data distribution with  a denser survey grid can be costly. It is
economical to do pre-stack data interpolation based on an “acceptable” input 3D data set. I’ll explore interpolation of pre-stack 3D data and
stacking by way of interpolation.

Interpolation to bin center as means of stacking
Pre-stack seismic data can be denoted as  A(xs ,ys ,xr ,yr ,t), or amplitude at time t, of a trace with source position (xs ,ys)  and receiver position
(xr ,yr). The time sampling is usually regular, t=kδt, k=1,2,...n, while the shooting geometry may have some irregularities. This notation
contains all the sampling (time & space) geometry. An alternative notation is  A(xm ,ym ,t), where  xm=(xs+xr )/2,  ym=(ys+yr )/2, is the mid-point
of the trace with source position (xs ,ys) and receiver position (xr ,yr). Note, however, (xm ,ym)  does not always coincide with a CDP bin center.
This second notation, compared with the first, having lost all azimuthal and offset information, is much less complete, but this is all the
geometrical information the conventional CDP stack demands. The third notation,  A(xm ,ym ,dm ,t), adds offset of a trace as an extra geometric
parameter, with  dm =√[(xs-xr )

2+(ys-yr )
2] as the source-receiver offset.

From these three notations, the interpolation algorithm can be formed in three to five dimensional space, if we handle one time slice at a
time. Polynomials are chosen as the interpolation function for their simplicity. Moreover, conventional stack can be considered as a special
case of such, as zero order polynomial in any of these spaces.

Interpolation in mid-point space to bin-center
In  (xm ,ym) space, the interpolation polynomial has the following form:
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in which, vector  a represents the full set of polynomial coefficients (aij). With input data at  (xm ,ym) , m=1,2,…N, polynomial coefficients a
=(aij) can be solved by minimizing:
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To ensure stability, order of polynomial,  Nx &  Ny, should be chosen such that the length of a is less than Nd. Substitute bin center
coordinates (x0,y0)  into polynomial  p(xm ,ym ,a), we get the interpolated amplitude at bin center as,
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Interpolation in mid-point space to bin-center with AVO modeling
Expand the polynomial in the section above into (xm ,ym ,dm) space,  to include terms in the conventional AVO form, we have the interpolation
polynomial modified to:
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with intercept polynomial  p0 (xm ,ym ,a),  and gradient polynomial p2(xm ,ym ,b):
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 And at the bin-center, zero-offset stack and AVO gradient is interpolated as,
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With the same order  Nx & Ny, both polynomial coefficients vectors,  a and b have the same number of elements as in the last section. The
number of unknowns double compared to the case which does not model AVO effects.

Interpolation in 4D space of source & receiver locations
In 4D space (xs ,ys , xr ,yr), the interpolation polynomial has the following form:
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Since the space (xs ,ys , xr ,yr) contains all geometrical information of input/output positions, it reflects source & receiver surface locations,
source/receiver offset and azimuth. With high enough order of the polynomial it can model azimuthal structural response and AVO effects
beyond gradient. The size of polynomial coefficient vector c grows fast with increased order. For all N’s equal 1, 2 & 3, for example, the
length of c  is 16, 81 & 256.

Estimate equivalent AVO gradient from interpolated & conventional stack
At a fixed time sample, conventional stack, G, is a weighted average of amplitudes of all input traces:
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where,  A(di) is the amplitude of a trace at offset  di  and  wi  its weight. The AVO model with simple gradient term assumes the amplitude as
function of offset in the form:

(2)   2
20 daa=A(d) +

in which,  a2 is the AVO gradient, and  a0  is the intercept or zero offset stack that can be assumed to be the same as the interpolated stack
at zero offset.

Substitute (2) into (1), we have

(3)   )dE(G)-(a=a 2/02
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in which  E(d 2 )  is the weighted average of offset squared:
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In a simple case of no weighting and that traces in the gather are uniformly distributed from zero to maximum offset  dmax, we have,
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Substitute (4) into (3), we have,

 (5)   3=dG)-3(a=a 2/ max02 (Interpolated_stack - conventional_stack)/ d 2
max

Numerical model test
A single 15-degree dipping reflector with known velocity over it is tested with some additive random white noise. The choice of such a
simple model is to reveal the ability of interpolation in resolving such. Bear in mind that such a model can be viewed as a building block of
seismic traces in general, the test results are revealing for a broad range of real data cases. The model also has an AVO gradient of
2*10-4/m2 with maximum offset at 2000m.

I tested only the more complex algorithm, interpolation in (xs ,ys , xr ,yr)  space. With polynomial orders increasing, the interpolation results
improve. Even the lowest order of polynomial is better than zero order (conventional stack or Gaussian stack). The model input data has
ideal distribution:  S/R azimuth,  and  mid-point scatter from bin center are random. Offset distribution is random while following a trend of
linearly increasing fold with offsets, which is characteristic of a uniform  receiver grid.

Conclusions
Estimating stacked sections and AVO effects by interpolation is a natural extension of the existing conventional method. The latter is a
special case of polynomial interpolation,  i.e., zero order polynomial. Model test showed that the interpolation offers higher resolution and
the ability to resolve the structure. Interpolation of pre-stack data is also possible with modestly structured data.
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Figure 1. Nsx=Nsy=Nrx=Nry=1,  number of polynomial coef.=16. Calculated “true” traces are between 900-1000ms. Interpolated traces are
between 1000-1100ms.  Heights of 1st &   2nd bar  (800-900ms) are cross-correlation  & absolute relative misfit between the “true” and
interpolated.  On the left (top & bottom annotation 260-285 & beyond), the 4 groups of  3 identical traces are “true” zero-offset traces at
bin-centre. Between these from right to left are 3 identical traces each for simple stack (265-267), Gaussian stack (273-275) and
interpolated (281-283).

Figure 2. Nsx= Nsy=Nrx=Nry=3, number of polynomial coef.=256 .  Compare with Fig.1,  higher order polynomial generates better gather and
bin-center zero-offset traces: higher cross-correlation and lower misfit.  The gather traces (only 156 of a total of 256 displayed) are
arranged in increasing source/receiver azimuth (bottom annotation)  and random source/receiver offset (top annotation), and are NMO
corrected with true velocity.


