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Introduction 
Converted waves have the potential for providing higher 
resolution than P-waves, due to the shorter wavelengths 
associated with the same temporal frequencies.  In practice it is 
often observed that converted wave resolution does not reach this 
ideal, particularly at depth.  One possible reason suggested for 
this is the stronger effect of Q attenuation upon converted waves.  
When considering the effect of absorption on converted waves, 
we must consider two different values QP and QS, in much the 
same way as a medium has two different velocities VP and VS.   
One possibility is that QS is lower than QP, especially for the 
unconsolidated near surface layers.  Deffenbaugh et al. (2000) 
considered the expected resolutions from PP and PS under 
assumptions that QS<QP, assuming a zero phase Q response.  
They conclude that in such a case there should be a “crossover” 
point of equal PP and PS resolution, with the PS resolution 
surpassing that of PP above the crossover, but becoming poorer 
than PP below it.  In contrast, when QS>QP, the PS resolution is 
expected always to exceed that of PP.  In this paper we undertake 
an analysis of the expected Q effect on converted waves 
compared to P waves, considering amplitude attenuation, 
resolution, and minimum phase dispersion.  We illustrate these 
effects by  modelling Q absorption for different homogeneous and 
layered models, with a view to improving understanding of 
observed converted wave behaviour.  The modeling confirms that 
Deffenbaugh et al.’s result holds true when dispersion is included.   

Constant Q Attenuation Theory 
 A widely used model of seismic attenuation in the earth assumes 
a Q value that depends upon the medium, but not upon frequency 
– within the bandwidth of interest.  This is known as the “constant 
Q model” of absorption, and a significant body of theory has been 
developed based upon it (e.g. Futterman, 1962; Kjartannsen, 
1979).  Aki and Richards (1980) provide a good overview of this 
theory. Based on this assumption, a differential equation for the 
amplitude attenuation law can be obtained, which has the 
following solution: 

  ( ) ( )QcxAxA 2exp0 ω−=    (1) 

where A0 is the initial amplitude of a harmonic wave of frequency 
ω, and A(x) is the amplitude after propagation by a distance x at 
velocity c, through a medium with a constant quality factor Q.   

The application of equation (1) to a propagating pulse gives rise to 
a pulse that broadens symmetrically about a central peak.  This 
situation entails a violation of causality, since some energy arrives 
before it has had the time to physically propagate.  In a classic 
paper, Futterman (1962) showed based only on the assumptions 
of linearity and causality, that there must inevitably be dispersion 
accompanying attenuation, and derived the relationship between 
them for the case where Q is constant over a wide range of 
frequencies. The resulting revised law of attenuation is given by 
the following equation: 
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where H is the Hilbert transform, with respect to ω. 

 

In the case of a layered medium and considering the simplest 
case of vertical wave propagation (hence using z instead of x for 
distance), the Q filters may be combined recursively for each 
layer.   The result is that equation (2) holds true where Q is 
replaced by an “effective Q” value, Qeff, given by: 
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Here 
1−−≡∆ nnn zzz  is the thickness of layer n, cn is the velocity  

and Qn is the Q value in layer n.  T is the total one-way travel time. 

An integral expression for effective Q, equivalent to (3), is given in 
Bickel and Natarajan (1985). 

PS Effective Q 
Using a similar approach as above, based upon the P and S wave 
propagation operators for each layer gives the following equation 
for QPS,eff , the effective Q in the PS case: 
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where vP,n and vS,n are the P and S wave interval velocities, and 
QP,n and QS,n are the P and S wave Q values, in layer nth layer. This 
can also be expressed in terms of the effective Q values for P and 
S, QP,eff and QS,eff: 
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where TP and TS here are one-way P and S times.  Alternatively, 
the effective Q for PS data can be given in terms of average 
vertical P and S-wave velocities, VP and VS, as follows: 
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where: 
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VPS is the usual definition of average PS velocity in the sense that 
it relates vertical two-way time to depth for a PS wave, and also 
appears in the context of converted wave zero-offset migration 
(Harrison and Stewart, 1993). 

Q Attenuation Compared in Time and Depth 
Equation (2) may be recast in the time domain as follows: 
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This describes attenuation for a wave travelling for a time period t, 
equal to tP for P-waves and tS for S-waves, in a medium with 
attenuation given by Q.  A comparison of equation (7) for P and S 
cases readily shows, in the case QS=QP=Q (which also implies 
QPS=QP), that for any given temporal frequency, ω, the S-wave 
attenuation is stronger than the P-wave attenuation, because 
tS>tP.  This is intuitively sensible, since the slower shear velocity 
implies that the wave uses more cycles propagating from any 
given depth as a shear wave than as a P-wave.  

However, this conclusion is unduly pessimistic for the following 
reason:  ultimately the important criterion to the geologist is the 
ability to resolve strata in depth, not in time.  Whether or not this 
involves transforming explicitly from time to depth, or not, we 
should compare PP and PS resolution based on a common 
vertical coordinate. Thus the resolution difference in the temporal 
frequency domain will be compensated by the compression of the 
PS time scale required to compare with PP time.  

Another way of thinking about this, is to consider attenuation as a 
function of depth, z, and wavenumber, ck /ω= : 
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Comparing P and S filter responses for the same wavenumber 
(necessarily corresponding to different temporal frequencies),  we 
see that in the case that QS=QP=Q, the predicted attenuations are 
the same.  To see why this is so, recall that the number of cycles 
executed for a particular wavelength is given by distance traveled 
divided by wavelength, and does not depend upon the velocity. 

Modeled Q Impulse Responses  
Vertical incidence Q responses are computed using a 1-D plane-
wave modeling program written in Matlab, based on equation (2). 
One-way constant Q attenuation for layered media is modeled for 
both P waves and S waves, and are then combined to compute 
the PP, PS and SS responses.  The model used is homogeneous, 
with events generated corresponding to a reflector at 2100m 
depth, corresponding to 2 sec. PP time.  The P-wave velocity is 
2100m/s, and the S-wave velocity 700m/s, thus the VP/VS ratio is 
3.0, giving a PS time equal to twice PP time, and SS time 3 times 
PP time.  For this study QP and QS are both set equal to 50.  

Impulse responses corresponding to unit amplitude reflections at 
2100m depth, are shown in Figure 2, displayed in depth for PP, 
SS and PS modes.  The modeling is done both without and with 
the dispersion term, giving a zero-phase response (Figure 2(a)), 
and a minimum phase response (Figure 2(b)), respectively.  Note 
that the pure attenuation response is identical in depth for all three 
modes, after normalizing amplitudes.  (For example it can be 
shown that the amplitude ratio of impulse responses for PP and 
PS modes is given by: (QPVP)/(QPSVPS) ). The differences in 

dispersion arise because the modeling requires a reference 
frequency corresponding to the maximum phase velocity, and this 
frequency corresponds to different wavenumbers for each mode.  
If reference frequencies are chosen separately for each mode, so  

 FIG 1. Homogeneous model: PP, PS and SS events are modeled 
corresponding to unit amplitude reflection at 2100m depth. 

 
(a)      (b) 

FIG 2. PP (blue), PS (magenta) and SS (red) impulse responses 
for the reflector at depth 2100m in FIG 1. The responses are 
displayed in depth and the Q absorption is computed: (a) using 
attenuation term only, giving a zero-phase response, and; (b) 
using both attenuation and dispersion terms, giving a minimum 
phase response.  All of the responses have been normalized 
according to the maximum amplitude of the attenuation response 
(a) for each mode.  Note that pulse shapes are identical for PP, 
PS and SS cases, but there are differences in onset time, due to 
the cut off frequency. 

as to correspond to the same wavenumber, the curves become 
identical (plotted in depth). 

Q Responses to Input Wavelet 
To consider the interaction with an initial wavelet, the modeling is 
repeated starting with a 20 Hz Ricker wavelet as input.   

The most obvious effect (aside from the different arrival times) is 
that the PS mode attenuates more strongly than PP, as seen by 
comparing the relative sizes of the 2nd and 3rd pulses relative to 
the 1st, and the SS mode attenuation is stronger still.  This is 
contrary to the observation for pure impulse responses, and 
suggests that the role played by the wavelet with regard to 
amplitude attenuation is important.   

In order to better compare resolution and dispersion, the events at 
2100 m depth are normalized to a peak amplitude of 1, and 
plotted together as a function of depth, in Figure 3.  This should 
be compared with the impulse responses in Figure 2. The Ricker 
wavelet is identical in PP, PS and SS time, so that after 
conversion to depth, PS has a resolution advantage before 
attenuation.  In this case, where QS=QP, the advantage is retained 
after propagation, as seen in Figure 3(a).  

It is instructive to compare these results in both temporal 
frequency and wavenumber domains.  Figure 4 demonstrates 
how the PP (a) and PS (b) spectra arise from the combination of 
the initial wavelet spectrum and the Q attenuation spectrum for 
the reflector at 2100 m depth (of course Q attenuation spectra are 

VP=2100 m/s
VS=700 m/s 2100 m
QP=QS=50

VP=2100 m/s
VS=700 m/s 2100 m
QP=QS=50
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depth-dependent).  Whilst the wavelet spectrum is identical in 
both cases, the PS mode attenuation spectrum decays much 
more quickly as a function of frequency than PP. Compare these 
with Figure 5, which shows the same spectra, but now plotted as  

    
(a)      (b) 

FIG. 3. Depth domain seismograms for PP, PS and SS responses 
at 2100 meter reflector of model in Figure 1. A 20 Hz Ricker 
wavelet is used and the Q absorption effect is computed: (a) using 
only the attenuation terms, and; (b) using both attenuation and 
dispersion terms.  Note the resolution advantage of PS and SS, 
when QS=QP. 

(a)  

(b)  
FIG. 4. Temporal frequency amplitude spectra for (a) PP and (b) 
PS event at 2100 meters depth.  The blue curve is the initial 
Ricker wavelet spectrum, which is the same for both cases.  The 
green curve is the spectrum of the Q filter for that depth.  The red 
curve shows the resulting spectrum of the pulse at depth.  It is the 
product of the blue and green spectra. The PS event shows both 
an amplitude drop, and a lower peak frequency relative to PP. 

functions of PP and PS vertical wavenumbers.  Now the 
attenuation spectrum (green curves) are seen to be identical 
functions of wavenumber for PP and PS, as predicted from 
equation (8).  However, the initial wavelet spectrum is stretched in 
PS wavenumber relative to PP wavenumber.  

The same modeling is repeated for the case where QP=50, and 
QS=30.  The results for the reflector at 2100 m depth are shown in 
Figure 6, again plotted in depth.  These should be compared with 
the result in Figure 3 for the QS=50 case.  The crossover behavior 
predicted by Deffenbaugh et al. (2000) occurs, such that the PS 

resolution appears to be similar to PP for the case QS =30.  In 
fact, the theoretical crossover at this depth occurs when QS = 
28.6.  It should be noted however that: amplitude attenuation is 
much stronger for PS and SS than for PP, and; that the dispersion  

(a)  

(b)  
FIG. 5. Vertical wavenumber amplitude spectra for (a) PP and (b) 
PS event at 2100 meters depth.  The blue curve is the initial 
Ricker wavelet spectrum, which has a higher wavenumber band 
for the PS case.  The green curve is the spectrum of the Q filter, 
which is now seen to be invariant in wavenumber.  The red curve, 
which is the product of the blue and green spectra, shows the 
resulting spectrum of the pulse at depth.  The PS event is seen to 
have a higher peak wavenumber than PP, but lower amplitude. 

 

 
(a)      (b) 

FIG. 6. Depth domain seismograms for PP, PS and SS responses 
at 2100 meter reflector of model in Figure 1, for QS=30, QP=50.  
The Q absorption is computed: (a) using only the attenuation 
terms, and; (b) using both attenuation and dispersion terms.  This 
shows the resolution “crossover” of PP, PS and SS, for a 20Hz 
Ricker input. We also see significant differences in dispersion. 

effects for PS and SS are more pronounced than for PP, as 
expected for the lower Q value of the S-wave. 

Layered Media 
The modeling above was also repeated for a layered medium in 
which a shallow layer 200m thick was assumed to have a low QS 

value, with the medium below it having QS=QP. In this case we 
confirmed that the Q response is exactly as would  be obtained by 
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using the effective QPS value as defined in equation (6) above.  
Assuming a QS=10 in the shallow layer, and computing the 
effective Q value at 2100 m depth, we find that QS,eff  = 36.2.  For 
QS = 5 in the shallow layer, on the other hand, the effective value is 
QS,eff  = 26.9. 

Pikes Peak Example 
Consider Figure 7, which shows a comparison of PP and PS 
migrated stacks from a 2-D high-resolution 3-C seismic survey at 
the Pikes Peak heavy oil field located east of Lloydminster, 
Alberta/Saskatchewan.  A review of the acquisition and 
processing may be found in Hoffe et al. (2000). 

The time axis for the PS section has been compressed by a factor 
of 2 relative to the PP section, which was found to approximately 
align corresponding events.  This also enables a crude initial 
comparison of PP and PS resolution on the migrated data.  
Overall, the data quality is considered to be good.  However, it is 
apparent that in general the PS resolution is considerably poorer 
than the PP resolution.  For example consider the top of the 
Waseca formation at about 550 ms PP time (1100 PS time). 

Analysis of the raw field data (not shown) indicates the following: 
the radial spectrum is deficient in low wavenumbers compared to 
the vertical spectrum, and; the radial spectrum decays rapidly 
after 20 Hz, whereas the PP spectrum has a slower decay after 
the corresponding frequency of 40 Hz.  The first effect is 
attributable to the initial source spectrum, which is equal in 
temporal frequency for both PP and PS modes, such that the low-
end roll-off covers a wider range of PS wavenumbers.  The 
second effect may well indicate a lower value of Q for shear 
waves than for compressional waves. 

 
(a) 

 
(b) 

FIG. 7. The Pikes Peak 3-C 2-D line, showing a comparison of 
migrated PP (a) and PS (b) stacks.  The PS stack has been 
displayed with a compression of 2 on the time axis, which 
approximately aligns events with the PP section. 

Discussion and Conclusions 
The effects of Q absorption may be broadly summarized as: 
 
1. Amplitude decay with propagation distance 
2. Broadening of the seismic pulse, due to differential 

attenuation of higher frequencies compared to low 

3. Minimum phase dispersion, consistent with the demands of 
causality 

 
The intuitive argument that shear waves traveling at a slower 
velocity than compressional waves have more oscillations and 
therefore more attenuation is basically correct, but misleading.  
The reason is that ultimately we wish to compare resolution in 
depth rather than time, or at least after converting from PS to PP 
time.  Considering the Q filter on its own, we find that the 
attenuation effect is equal for PP and PS if they have the same Q 
value.  However, it is important to consider the interaction with the 
initial wavelet.  Because the wavelet is a function of time rather 
than depth, it corresponds to higher wavenumbers for PS than for 
PP.  This might appear to favor the shear waves, and in terms of 
resolution, it does.  However, the missing low frequencies have a 
confounding effect upon PS amplitudes. 

Figures 4 and 5 help to understand these two effects.  The 
resulting PS spectrum of the event has a higher peak 
wavenumber than PP, consistent with the observation of higher 
resolution in the depth domain.  However, there is less overlap of 
the initial wavelet spectrum and attenuation spectrum, leading to 
an overall weaker amplitude.  In a sense this could be attributed 
to lack of low-end frequency content in the initial wavelet, rather 
than shear wave attenuation.  In other words the PS wave can 
potentially provide equal resolution to the PP in the depth domain 
but it needs the frequencies at the lower end that correspond to 
higher frequencies for PP.  Robbed of low-end frequencies, what 
remains is then subject to high absorption, diminishing the 
amplitude.   The problem may then be one of signal to noise ratio, 
rather than resolution.  Hence the emphasis during acquisition 
should be on increased power at the low end of the spectrum 
without compromising the high end necessary for PP resolution.   

For cases where S-wave Q is less than P-wave Q, modeling 
confirms the predicted crossover in resolution (Deffenbaugh et al., 
2000).   Furthermore, in this case the dispersion effect is stronger 
for PS than for PP data, which may be important to consider when 
matching events for VP/VS computation.  For the case where 
QP=50, and QS = 20, our modelling showed an apparent difference 
in depth of 50 meters.  The implications are that to match PP and 
PS events a velocity different to the limiting phase velocity would 
have to be used – for example corresponding to the velocity of the 
center frequency of the attenuated pulses.  Conversely, velocities 
determined from comparing PS and PP event times are likely to 
be affected by differences between P-wave and S-wave Q. 
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