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Abstract 
The inversion of seismic data may be approximated by a Kirchhoff 
migration process. The kinematics of this process is illustrated 
using cartoon images of 2D data. 

Introduction 
This paper represents an abbreviated form of a paper that 
appeared recently in the December 2001 issue of the Recorder. 

The term inversion is used in a number of different applications in 
geophysics such as  

1. Estimating source and receiver statics from cross-
correlation statics (trims) 

2. Deconvolution 

3. Converting seismic data to a geological subsurface 
image 

These applications often use the mathematics of least squares 
inversion in which many observations are processed to extract the 
best estimate of a number of parameters, i.e. over-determined 
where we have many more equations than variables. 

The last two applications may be combined for a definition of 
geophysical inversion that produces “models of the earths 
physical properties”, (Lines 1992) from observations collected at 
the earth’s surface or in a borehole.  These processes include: 

• Lindseth’s method (1979) of estimating impedance from 
combining an “integrated” seismic trace with a low frequency 
velocity model, 

• Line’s method (1988) of estimating a geological model of 
horizons and interval velocities from seismic and potential 
field data, or a  

• Kirchhoff type migration that attempt to produce an 
impedance image of the subsurface from seismic data. 

Figure 1a illustrates the forward modelling process in which 
seismic data is created from reflectivity and a wavelet.  Figure 1b 
illustrates the reverse process of inversion in which geological 
data is estimated from the seismic data.   
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Figure 1 Illustrations of a) the forward modelling process and b) 
the reverse inversion process 

Note the use of the term “estimate” in the inversion process.  The 
forward modelling process uses established principles of physics 
to create exact seismic data.  However, the reverse process is 
more difficult, usually because we don’t know the wavelet, and 
some of the operations are arithmetically inverted and we get 
division by zeros.  Consequently, approximations are included in 
inversion process to stabilize the results.  Some of these 
approximations are illustrated in this paper using cartoon 

drawings to illustrate how Kirchhoff migration is an approximation 
to the inversion process.   

In contrast to inversion, I think of seismic migration as a process 
that uses the wave equation to reposition or focus seismic energy 
at a location that represents the reflectors.  The term imaging may 
be used to include both migrations and inversions. 

Kirchhoff migration is based on the integral solution to the wave 
equation and has a kinematic and amplitude parts to the solution.  
Every migrated sample results from the amplitude weighting and 
summing of energy along a diffraction shape that is defined by the 
location of the migrated sample.  The kinematics define the 
traveltimes of a diffraction shape, while the amplitude part of the 
solution provides an amplitude weighting that is applied along the 
diffraction.  Modern inversion techniques (Bleistein 2001) also 
result with the same Kirchhoff type solution but requires “true 
amplitude” type processing and may apply different amplitudes 
weightings along the diffraction. 

Convolution model and geophysical inversion 

I will start with the convolutional model for a one dimensional trace 
to illustrate the inversion process and then proceed to the 2D 
model of seismic data and its inversion.  The seismic data s(t) is 
formed by convolving the reflectivity r with a wavelet w(t).  
Ignoring for the moment the spatial dimensions of r, i.e., 

( ) ( )s t r w t= ∗         (1) 

If equation (1) is expressed in the frequency domain, the 
convolution becomes a product, i.e., 

( ) ( )S f R W f= •        (2) 

This linear form of the equation enables a simple estimation of 
the reflectivity at each frequency from 

( )
( )

S f
R

W f
=         (3) 

The actual reflectivity could then be found by summing all the 
frequency components using the Fourier transform.  The problem 
with this procedure is that D(f) may go to zero at some frequency, 
and that we can’t perform the division in equation (3) when there 
are zeros in D(f).  With inversion, as in deconvolution, the 
procedure becomes an estimation problem that is solved with a 
variety of methods 

Linearization of convolution using matricies 

We had linearized the convolution process above by using the 
frequency domain.  We can also linearize convolution with matrix 
theory.  I will start with a one dimensional model where the 
reflectivity, wavelet, and trace are functions of time as defined by 
the convolution equation 

( ) ( ) ( )s t r w t dτ τ τ
∞

−∞

= ∗ −∫ ,      (4) 
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where we integrate over τ to compute one sample on the seismic 
trace s(t), as illustrated in Figure 2.  Corresponding time samples 
in r and wr are first multiplied then summed to get the single nth 
sample, i.e. the dot product.   We then compute all values of t on 
the trace to complete the convolution. 
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Figure 2  Convolution defined for a single nth sample. 

All elements of the seismic vector can be computed by repeating 
the process for all value of n, as illustrated in Figure 3  that shows 
numerous wavelets with varying delays.  In this cartoon figure, 
(and those that follow), the sample interval is much finer along the 
rows to define the wavelet than between the rows for illustration 
purposes, but the intent is to imply that the reversed wavelet 
increases one sample to the right when progressing to the next 
row, i.e. at the nth row, the right side of the wavelet is at the nth 
sample.  The sample by sample product of the reflectivity vector 
with the wavelet at the nth row, (containing the enlarged wavelet in 
blue), is summed then stored at the nth location in the seismic 
vector. 
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Figure 3  Computing other samples in convolutional model. 

The wavelet data illustrated in Figure 3 is in a convenient form to 
be defined by a two dimensional matrix W that has N rows and M 
columns, with the number of columns defined to match the 
number of elements in the reflectivity vector.  Each row in the 
matrix defines at least a portion of the delayed and time reversed 
wavelet wm-n, where n represents the row number and m the 
column number.  All the elements on a given diagonal of W will be 
the same, i.e. W is a Toeplitz matrix.  To be consistent with matrix 
algebra, we define the reflectivity as a column vector r, and the 
seismic trace as a column vector s.  The matrix equation for the 
convolution process then becomes a linear process 

[ ][ ] [ ]MN M N×
W r = s       (5) 

where, for convenience, the dimensions are shown in square 
brackets below the matrix and vectors.  Equation (5) is visualized 
in Figure 4 similar to that in Margrave 1998. 
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Figure 4  Matrix form of the convolutional model 

Reversing the modelling process 

It was easy to do the forward modelling where the seismic trace 
was computed from a reflectivity and wavelet using equation (4).  
We now “reverse” this modelling process to estimate the 
reflectivity from a given seismic trace and known wavelet.  Lets 
start by trying to take the inverse of W in equation (5) to get 

1

[ ] [ ?] [ ]
?

M M N N

−

×
r = W s .      (6) 

That probably won’t work because we can’t take the inverse of a 
matrix that is not square, and we would have to make M = N.  
That could be solved, but the biggest problem is that W may 
contain zeros, which, when inverted, would become infinite.  
There are a number of ways to modify W to make it invertable 
such as adding small numbers to eliminate the zeros (such as 
prewhitening), however, in this paper I will only consider the linear 
process that leads to the “least squares” solution. 

Least squares solution 

One solution to this problem is to multiply both sides of equation 
(5) by the transpose of W, 

[ ][ ] [ ] [ ] [ ]

T T

MM N N M M N N× × ×
W W r = W s ,      (7) 

and then inverting WTW giving the well known solution (Lines 
1984).   

( ) 1

[ ] [ ] [ ] [ ] [ ]

T T

M M N N M M N N

−

× × ×
r = W W W s .      (8) 

The product A = WTW produces a square matrix which can be 
inverted only when there are no zeros in the spectrum of the auto-
correlation wavelet.   
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Figure 5  Illustration of WT and W with corresponding rows and 
columns displayed for taking the product of the two matrices. 
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The square matrix A is shown in Figure 6 with vertical traces that 
illustrate that all the new wavelets are the delayed auto correlation 
of the original wavelet.  Plotting the data with horizontal traces 
should produce the same image (with adequate column 
sampling).   

A  
Figure 6  The result of A = WTW, the product of a matrix and its 

transpose. 

All elements on any diagonal in A are equal (also Toeplitz) with 
the largest value on the diagonal.  This is very significant as A is 
similar to the identity matrix I in which the data is zero, except for 
unit values on the diagonal, as illustrated in Figure 7. 

1 0 0 0 0 0 0 ...

0 1 0 0 0 0 0 ...

0 0 1 0 0 0 0 ...

0 0 0 1 0 0 0 ...

0 0 0 0 1 0 0 ...

0 0 0 0 0 1 0 ...

0 0 0 0 0 0 1 ...

... ... ... ... ... ... ... ...

 
 
 
 
 
 
 
 
 
 
 
  

 

Figure 7  An identity matrix. 

A feature of the identity matrix is that the inverse is also an identity 
matrix, i.e. I-1 = I.  If we assume that the auto-correlation matrix A 
is an approximation to the identity matrix I (except for a scale 
factor), we can now assume  

[ ] [ ][ ] [ ]

T

M M M MM N N M × ×× ×
= ≈W W A I ,      (9) 

and also that  

( ) 1

[ ][ ] [ ]

T

M MM N N M

−

×× ×
≈W W I .      (10) 

This simplification allows equation (8) to be reduced to a very 
simple form  

[ ] [ ] [ ]

T

M M N N×
≈r W s ,      (11), 

which allows us to define an estimate of the reflectivity r̂  by 

[ ] [ ] [ ]
ˆ T

M M N N×
=r W s .      (12) 

The reflectivity can be estimated from the product of the seismic 
vector s with the transpose of the wavelet matrix WT. Our 
simplifications have assumed that the inverse to a matrix W-1 can 
be approximated by a very simple transpose WT, i.e.,  

1

[ ] [ ?]

T

M N M N

−

× ×
≈W W .      (13) 

The simplifications leading to equation (13) produced a band-
limited form of the reflectivity, and is identical to that obtained with 
a matched-filter. 

Kirchhoff migration as a transpose process 

There are many “reverse” processes that use the concept of 
approximating the inverse with a transpose.  What about seismic 
modelling and migration?  In seismic modelling we place a 
diffraction at every scatterpoint.  When using Kirchhoff migration, 
we define a kinematic diffraction shape for a scatterpoint, then 
weight and sum the input energy defined by this shape, and insert 
the energy at the scatterpoint location.  This is in essence, a two-
dimensional cross correlation, and will produce a peak of energy 
when the model diffraction matches a diffraction in the input data, 
i.e. matched filtering, or by approximating the inverse process with 
a transpose process.  We are now in a position to visualize and 
evaluate the limitations of our migration algorithms with true 
inversion.   

Visualizing modelling data with diffractions 

We will start by modelling a gather of reflectivity traces with a 
wavelet matrix W in which the wavelets are time varying to get a 
gather of traces s as illustrated in Figure 8  

 

W 

= 

r s  

Figure 8  Matrix form of the convolutional model with time varying 
wavelets. 

We now replace the time varying wavelet with a time varying 
diffraction, and require an added dimension to account for the 
number of traces in the diffraction.  A side view is shown in Figure 
9a that shows the diffraction as a time varying “wavelet”, similar to 
that in Figure 8.  The full 3D diffraction model is illustrated in 
Figure 9b, which shows the kinematic shape of three diffractions.  
The D matrix is mainly composed of null space, with scaled 
values on a surface, which, when the velocities are constant, is a 
cone with a vertical axis. 
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a)   b) 

Figure 9  The diffraction matrix D, showing a) the (z, t) view and b) 
a perspective view showing the added dimension of χ. 

Seismic modelling is illustrated in Figure 10 where one sample in 
S at s(xp, tq) is formed when the 2D matrix R is dot multiplied by 
one plane of the 3D diffraction matrix D at constant time t.  The 
matrix R is aligned such that the location of the migrated trace 
coincides with the location of χ = 0, as illustrated in Figure 10 that 
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shows the R matrix above the diffraction matrix D.  As different 
migration traces are selected, the matrix R above D is shifted in 
the corresponding χ direction.  For example, when the red trace in 
S is being evaluated, the corresponding red trace in RT is located 
above χ = 0. 
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Figure 10  Matrix view to obtain a zero-offset section S from a 
reflectivity matrix R and a diffraction matrix D. 

The time of a modelled sample tq is selected by the horizontal 
plane within D, and the trace location xp by the relative alignment 
of that trace above χ = 0 as given by 

( )
1

( , ) ( , , ) ,
i j

I J

p q i j q p i j
I z

s x t d z t r x z
χ

χ χ
=− =

= −∑ ∑ .  (14) 

A constant time (slice) in D intersects the diffraction cone at a 
semi-circle, as identified by one red curve in the perspective view 
of Figure 10.  This corresponds to the method of producing a 
seismic modelled section by summing reflector energy over a 
semi-circle, i.e. when creating a seismic section from modelling, 
we can either sum scatterpoints over a semi-circle to get one 
modelled sample, or spread energy from a scatterpoint along a 
hyperbolic diffraction.   

Let’s return to matrix theory for a moment, and see what happens 
when we take the transpose of D to estimate a migrated section 
from a zero-offset seismic section, i.e.,  

[ , ] [ , , ] [ , ]
ˆ
x z x z t x t

= Tr D s .      (15) 

This result is illustrated in Figure 11 where DT contains a cone 
with a horizontal axis.  Now, the section s is dot multiplied with 
constant depth planes (slices) and the energy is summed where 
the horizontal plane intersects the cone, illustrated at one depth 
level by a red hyperbola.  The equation for migration one sample 
r(xp, zq) is 

( )
1

ˆ( , ) ( , , ) ,
i j

I J

p q i q j p i j
I t

r x z d z t s x t
χ

χ χ
=− =

= −∑ ∑ .     (16) 

The dual property to hyperbolic summation in migration is the 
spreading the energy along a semi-circle, defined in Figure 11 by 
vertical planes in DT at constant time. 
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Figure 11  Matrix view to obtain a zero-offset section S from a 
reflectivity matrix R and a transpose diffraction matrix DT. 

Comments and conclusions 

The kinematics of diffraction stack migrations are straight forward, 
however the amplitude weightings used when summing the 
diffractions are still under investigation.  Migrations that are 
derived from solution to the wave equation include weighting 
schemes.  The integral solution of the wave equation changed the 
heuristic diffraction stack process to the mathematically 
deterministic Kirchhoff algorithm. 

Inversion techniques provide an alternate solution when imaging 
the subsurface, and in some cases produce algorithms that are 
very similar to Kirchhoff migrations.  Approximate linear algebra 
inversions were shown to be identical to matched filters, and the 
difference from an ideal inversion identified.  

References 
Bleistein, N., Cohen, J. K., and Stockwell, Jr., J. W., 2001, 

Mathematics of Multidimensional Seismic Imaging, Migration, 
and Inversion, Springer 

Cary, P. W., and Li, X., 2001, Some basic imaging problems with 
regularly-sampled seismic data, Exp. Abs., SEG Int. Nat. 
Exp., 981-984 

Claerbout, J. F., 1992, “Earth Soundings Analysis: Processing 
versus inversion”, Blackwell Scientific Publications 

Claerbout, J. F., 1971, Toward a unified theory of reflector 
mapping, Geophysics, 36, 467-481 

Dellinger, J., Gray, S., Murphy, G., Etgen, J., and Fei, T., 1999, 
Efficient two and one-half dimension true-amplitude 
migration, Exp. Abs., SEG Nat. Conv., 69, 1540-1543 

Gazdag, J., and Squazzero, P., 1984, Migration of seismic data, 
Proceedings of the IEEE, 72, 1302-1315 

Geiger, H. D., 2001, Relative-amplitude preserving prestack time 
migration by the equivalent offset method, Ph.D. Thesis, 
Department of Geology and Geophysics, University of 
Calgary 

Larner, K., and Hatton, L., 1990, Wave-equation migration: two 
approaches (1976), First Break, 8, 443-448 

Lindseth, R. O., 1979, Synthetic sonic logs-a process for 
stratigraphic interpretation, Geophysics, 44, 3-26 

Lines, L. R., and Levin, F. K., 1992 Inversion of Geophysical Data, 
Geophysical reprint series, No. 9, SEG 

Lines, L. R., Schultz, A. K. and Treitel, S., 1988, Cooperative 
inversion of geophysical data: Geophysics, 53, 8-20. 

Lines, L. R., and Treitel, S., 1984, Tutorial: a review of least-
squares inversion and its application to geophysical 
problems, Geophysical Prospecting, 32, 159-186 

Margrave, G. F., 1998, Theory of non-stationary linear filtering in 
the Fourier domain with applications to time-variant filtering, 
Geophysics, 63, 255-259 

Schneider, W. A., 1978, Integral formulation for migration in two 
and three dimensions, Geophysics, 43, 49-76 

Ziemer, R. E., and Tranter, W. H., 1995, Principles of 
Communications, Wiley 

 


