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Summary 

Given a particular statistical measure of signal to noise (S/N), 
the “matched filter” is the ideal linear filter for maximizing the S/N 
ratio of a signal amongst random noise (Robinson & Treitel, 
1980). Kirchhoff migration is a seismic processing equivalent to 
the matched filter. Through improved approximations of the 
earth’s impulse response, superior output S/N ratios, or superior 
imaging, can be obtained. In this paper, a matched filter approach 
to prestack P-SV wave amplitude weighting is proposed, and 
preliminary tests on synthetic data yield promising results. 

Introduction 

The chief purpose of migration is to reconstruct an image of 
the subsurface from seismic reflection data. Conventional P-SV 
wave Kirchhoff prestack migration involves the summation over 
scatterpoint traveltime impulse responses where a T0/T scaling 
factor is applied to each input sample. P-SV wave reflection 
coefficients generally approach zero as the source-receiver offset 
approaches zero, in constant velocity, isotropic media. Therefore, 
application of the T0/T scaling factor alone poorly approximates 
the earth’s impulse response. A new weighting function is thus 
proposed to improve upon the output S/N ratio of P-SV migration 
through improved estimates of the impulse response. 

First, an introduction to matched filter theory will be given, 
followed by a discussion of the relationship between the theory 
and Kirchhoff migration. An overview of P-SV wave kinematics will 
follow to facilitate the understanding of the method of migration 
used in the synthetic example. 

The Matched Filter 

Assuming a known input signal in random white noise, the 
matched filter is designed to maximize the signal to noise (S/N) 
ratio, µ . Defined as the ratio of the square of signal amplitude to 
the square of noise amplitude, µ  is given by (Lathi, 1965) 
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where 0( )ms t  is the output signal and 0( )mn t  is the output noise 
at time mt . The mean value of the noise is used, as the noise is 
random. A diagram of the matched filter shown in Figure 1., 

 
FIG. 1. The matched filter. 

where ( )h t is the function of the desired optimum filter. It may be 
shown that µ  can be maximized through selecting a filter such 
that (Lathi, 1965): 

 1( ) ( ( ) )mj th t F kS e ωω −−= − , (2) 
where ( )S ω−  is the Fourier transform of the time reversed input 
signal, mj te ω− represents a time shift of mt  time units, and  is an 
arbitrary constant. Through crosscorrelation of the input signal 
with the known impulse response, the ideal output S/N ratio is 
achieved  

 

Converted wave kinematics 

Consider the prestack geometry in Figure 2, where h is half 
of the source-receiver offset, z0 is the depth of the scatterpoint, 
and x is the source-receiver midpoint relative to the scatterpoint. 

 
FIG. 2. Prestack time migration geometry showing traveltime from 
source to scatterpoint, st , and traveltime from scatterpoint to 
receiver, rt . 

The total traveltime from source to receiver in isotropic, constant 
velocity media is given by (Bancroft et al., 1998) 

 s rt t t= + . (3) 
The P-P wave energy traveltime surface for a scatterpoint in 
constant velocity is known as “Cheops pyramid”, and is defined by 
the double square root (DSR) equation (Bancroft et al., 1998) 
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where VP is the P-wave velocity, and is constant. An example of 
Cheops pyramid is shown in Figure 3. Prestack migration is 
accomplished through crosscorrelation of the traveltime surface 
with the prestack data. 

Consider now the prestack volume of a scatterpoint using 
converted waves. The traveltime surface is again given by the 
DSR equation, however it is a modified version of equation (4) as 
it incorporates shear wave velocity from the scatterpoint to the 
receiver. The converted wave DSR equation is now given by; 
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where Vs is the shear wave velocity. By letting VP = 800m/s, VS= 
400m/s, and holding the other parameters the same as in Figure 
3, the traveltime surface can be calculated and is shown in Figure 
4. 
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FIG.3.a) Perspective view of a P-P wave traveltime surface for a 
scatterpoint located at 0 100z m= . 800 /PV m s= .b) plan view of 
(a) showing contour lines of constant traveltimes. 

 
FIG.4. a) Perspective view of a P-SV wave traveltime surface for a 
scatterpoint located at 0 100z m= . 800 /PV m s= and 

400 /SV m s= . b) plan view of (a) showing contour lines of 
constant traveltimes. 

Observe that the converted wave traveltime surface (Figure 
4) differs from the P-P case (Figure 3) in that it appears to be 
biased along the line x h= . This shape change is due to the 
asymmetry of P-SV wave raypaths. Conventional Kirchhoff 
prestack migration of P-SV data entails summing over each 
traveltime surface, and placing the energy at the scatterpoint 
location. Corrections are made to compensate for spherical 
divergence, obliquity (T0/T), and wavelet distortion (Bancroft, 
2000). 

Migration 

According to matched filter theory, improved impulse 
response estimation results in improved output S/N ratio. The 
proposed migration method suggests approximating the impulse 
response by weighting each sample on a traveltime surface by the 
appropriate Zoeppritz defined reflection coefficient at the 
scatterpoint. 

Consider the P-SV traveltime surface shown in Figure 4. 
Given the geometry in Figure 2, the angles of incidence all x and 
h locations may be calculated. It is assumed that the scatterpoint 
is a reflective element with a particular dip angle. The angle 
between the down going and up going rays, α, is given by: 
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and, 
 i rα θ θ= + , (7) 

where iθ  is the angle of incidence and rθ  is the angle of 
reflection. Using Snell’s Law we obtain: 
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Assuming that sin sini r i rθ θ θ θ≈ , and upon substitution of (8) 
into (7), iθ  is given as: 
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where γ is the P SV V  ratio. 

Shown in Figure 5 is the % error in the approximation used in 
(8) where 
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It is shown that for a P SV V ratio of 2, the error in iθ  ranges from 
0% to 5% (at iθ ~35°) to 10% (at iθ ~45°). Errors in excess of 
±10% are not presented in the figure. This source of error has 
been considered in the migration algorithm. 

 

 
FIG. 5. Approximation error in sin sini r i rθ θ θ θ≈  approximation. 

Assuming that the scatterpoint is a dipping, elemental 
reflector, Zoeppritz defined reflection coefficients may be 
calculated for all source-receiver locations. Incident angles for all 
source-receiver pairs over a scatterpoint are calculated using 
equations (6) and (9). 

The reflection coefficient surface for all CMP-offset pairs may 
now be computed through solving the Zoeppritz equations given a 
set of velocity and density parameters shown in table 1. 
 

 
Table. 1. Velocity and density parameters for medium and 
scatterpoint. 

These parameters were chosen to obtain a large range of 
reflection coefficients for the given range of incident angles, and 
were not chosen for any geological significance. The reflection 
coefficient surface is shown in Figure 7. 

a) b)a) b)

a) b)a) b)

Vp(m/s) Vs(m/s) ρ(kg/m^3)

Medium               2400                      1200   4450     

Scatterpoint 2100                      1050                       2100     

Vp(m/s) Vs(m/s) ρ(kg/m^3)

Medium               2400                      1200   4450     

Scatterpoint 2100                      1050                       2100     

γ=1.5
γ=2.0
γ=2.5

γ=1.5
γ=2.0
γ=2.5
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FIG. 7. . P-S wave reflection amplitudes calculated from the 
Zoeppritz equations. Parameters used found in table 1. 

The Kirchhoff migration is performed by first scaling each 
sample on the traveltime surface by the corresponding reflection 
coefficient as shown in Figure 8. Summation over the traveltime 
surface, and placing the energy back at the scatterpoint 
completes the migration. This process is repeated for every output 
sample. 

 
FIG. 8. Zoeppritz defined reflection coefficient surface plotted over 
a traveltime surface. Sample located at CMP(x),Offset(x) is shown 
to be scaled by reflection coefficient at CMP(x),Offset(x). 

The Equivalent Offset Method (EOM) of prestack time 
migration is computationally fast and provides excellent velocity 
information. This technique is based on and includes all of the 
benefits of Kirchhoff time prestack migration, and may be applied 
to both P- wave and P-S data (Bancroft et al.,1998). EOM is thus 
chosen for the analysis. 

EOM is founded on the principles of equivalent offsets and 
common conversion point (CCSP) gathers. The equivalent offset 
is used to enable the gathering of input samples prior to any time 
shifting. This transformation of P-SV data into CCSP gathers 
removes the asymmetry imposed by the P-SV raypaths. 
Equivalent offsets are chosen such that the total traveltime from 
source to receiver, t, is equal to that of a co-located source and 
receiver, 2te. As shown in Figure 9, he is the equivalent offset from 
the CCSP surface location. 

The key idea of EOM is the reformulation of equation (5) into 
one with a single square root. Assuming that the pseudo depth of 
a CCSP is z0 and P-wave and S-wave velocities at this depth are 
VP mig and VS mig respectively, then mig P mig S migV Vγ =  expresses 

their migration velocity ratio. Equating (5) with the traveltimes for a 
co-located source and receiver yields (Wang et al.) 
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It may be shown that (Wang et al.) 
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where 
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sh is the distance between the source and the scatterpoint, and 
rh is the distance between the receiver and the scatterpoint. 

The CCSP gathers are scaled, filtered to zero-phase, and 
corrected for normal moveout (NMO). Stacking of the CCSP 
gather produces the output migrated trace. 

 
FIG.9. The position of the equivalent offset and traveltimes for a 
conversion scatterpoint. 

Synthetic  example 

Synthetic P-SV prestack data were created for a flat reflector 
model using MATLAB. The acquisition parameters are given in 
table 2, and the elastic parameters are identical to those shown in 
table 1, where the properties of the 2nd layer are equivalent to 
those of the scatterpoint. The acoustic parameters were again 
chosen to incorporate a large range of reflection coefficients. 

 

 
Table. 2. Acquisition parameters used in split-spread experiment. 

An example of a shot recorded over a flat reflector with the 
addition of noise is shown in Figure 10. A 30-Hz Ricker wavelet is 
used as the source. Noise was added to the section such that the 
signal to noise ratio equals 1. The RMS value of the signal on an 
arbitrary pilot trace is calculated and the standard deviation of the 
noise is given as: noise power = (signal power) / (signal to noise 
ratio). For each prestack trace, a pseudo random noise vector 
was calculated and added to the trace. A S/N ratio of 1 was used 
in calculating noise for all traces. Polarity has also been reversed 
for traces with negative offsets. Diffraction amplitudes were 
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2                           25                       25                    0 to 2500               -1250 to 1250                              400 

sample int (ms)   shot int.(m)      rec.int.(m)     shot range(m)     max-min s-r offset (m)  depth to reflector (m) 

2                           25                       25                    0 to 2500               -1250 to 1250                              400 
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corrected for geometrical spreading and scaled by the appropriate 
Zoeppritz defined reflection coefficients. 

 
FIG.10. Shot record shown in Figure 10 with the addition of noise. 
S/N =1. 

A CSP gather located at x=1250m without any additional 
amplitude scaling is shown in Figure 11. The same CSP gather 
with amplitudes scaled by the matched filter is shown in Figure 
12. Both gathers are dip-limited to 45°. High amplitude noise is 
apparent along the dip limits of both figures as a dip limit taper is 
yet to be implemented in the CSP algorithm. The chief difference 
between the two figures is that the amplitude filtered gather 
exhibits much less relative noise, particularly at shorter equivalent 
offsets. This effect is due to the scaling of samples by near zero 
reflection coefficient values. 

A comparison of the final output migrations is shown in 
Figure 13. Ten non-match filtered CSP gathers, were corrected for 
NMO, filtered to zero-phase, stacked, and displayed as the first 10 
traces in Figure 13 (from left to right). The same process was 
repeated for the ten match-filtered gathers, and the migrated 
traces constitute the remaining ten traces in Figure 13. All traces 
in the figure are plotted using the same scaling factor. 

Notice that the match filter has succeeded in increasing the 
S/N ratio, and thus imaging, of the output migration. 

 
FIG.11. CSP gather located at x=1250m. No matched filter 
applied. Equivalent offset shown on x-axis, where dx=12.5m. 
 
 
 
 
 
 
 
 

 
FIG.12. CSP gather located at x=1250m. Amplitudes scaled by 
matched filtering. Equivalent offset shown on x-axis, where 
dx=12.5m. 

 
FIG.13. Traces 1-10 are migrated CSP gathers without matched 
filtering. Traces 11-20 are migrated CSP gathers located at the 
same positions, but have been matched filtered. Notice the 
increase in S/N on traces 11-20. 

Conclusion 

Preliminary analysis demonstrates the effectiveness of the 
matched filter in improving the S/N ratio in prestack migration 
given the simple synthetic example. Future work includes adding 
features to the migration algorithm such as a dip-limit taper, and a 
T0/T scaling factor.  

Other potential applications of matched filtered migration 
include the detection of low amplitude events such as class 2 AVO 
anomalies in P-wave data. 
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