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Introduction 
 
We can divide reflected travel-time investigations into two parts. Into the first category, we may place a large number of studies, which deal 
with numerical methods for travel-time inversion (Goldin, Hubral and Krey, Al-Chalabi, Shah, Chernyak, Gritsenko and others). This 
approach requires numerical ray tracing. For the laterally varying layered media, within this approach, we cannot derive direct analytical 
relationships between interval and stacking velocities as we can for the horizontally homogeneous media. That means that we cannot 
obtain explicit general quantitative conclusions about how laterally varying boundaries (that is, boundaries with structures) influence 
stacking velocities. 
 
Into the second category, we may place general investigations of direct analytical relationship between subsurface parameters (reflected 
boundaries and interval velocities) and stacking velocities. Most of these investigations were of laterally homogeneous layered medium 
[Bolshih, Taner and Koehler, Puzirjov]. 
  
Let us ask several questions: What happens if the boundaries or (and) interval velocities vary laterally? What lateral changes of the normal 
incident time t0 and stacking velocities Vstack can we expect? Do we need to take into account lateral velocity changes? Can we go from 
stacking velocities to the interval ones through the Dix formula and then to time-to-depth transformation? What are the restrictions for 
using this formula? What are the necessary corrections and when do we have to make them? 
 
To answer these questions, the perturbation method was used to derive explicit formulas of stacking velocities and normal incident time for 
a laterally varying layered velocity model. The main question that I try to answer is: “What happens with the normal incident time to and 
stacking (NMO) velocity when boundaries and interval velocities start to deviate from constant values?”  
 
Theory 
  
In this paper, for simplicity sake, I consider 2-D media but the same scheme can be applied to 3-D media as well. Let us consider layered 
media with the boundaries z = Fk(x) and layered velocities vk(x), k=1, 2, …, m. Let ϒ(S, R) be the reflected wave raypath from the source 
S(X-l/2,0) to the receiver R(X+l/2,0) where X is the surface midpoint and l is the distance between S and R, Fig.1; Pk(ξk,F(ξk)) –intersection 
points of the downgoing path, Qk(ηk,Fk(ηk)) –intersection points of the upgoing path, k = 1,2,…,n, n – number of intersecting layers . Then 
for time t(S, R), from the source S to the receiver R, we can write 

   n 

t(S,R)  =  Σ [tk(ξk-1,ξk)+τk(ηk-1,ηk)] = T(S,R,ξ1,ξ2,…,ξn,η1,η2,…,η n).   (1) 
 k=1 

 
 

 
 

Fig. 1. Ray from the source S to the receiver S and intersection points 
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Here tk(ξk-1,ξk) denotes traveltime from Pk-1 to Pk, τk(ηk-1,ηk) - traveltime from Qk-1 to Qk. Let xk be the x-projection of the segment Pk-1Pk, xk = 
ξk-1 - ξk; yk – x-projection of the segment Qk-1Qk, yk = ηk-1 - ηk. Then 
 

               k                    k 
   ξk = X – l/2 + Σxi,      ηk= X + l/2 - Σyi     (2) 

        i=1               i=1 
and 

         n 

l =  Σ (xk + yk)       (3) 
       k=1 

  
Let us substitute (2) into equation (1). Then function T depends on variables x1, x2,.., xn, y1, y2,…, yn. According to Fermat's principle (x1, 
x2,…,xn, y1, y2,…, yn) is a stationary point of function T under condition (3). If L - Lagrangian function then x1, x2,.., xn, y1, y2,…, yn and 
Langrangian multiplier λ satisfy equation (3) and the system 
 

 n          n 

  ∂T/∂xk = Σ∂ti/∂xk = λ,      ∂T/∂yk = Σ ∂τj/∂yk = λ.   (4) 
j=k         j=k 

 

Thus, the problem of ray path and time calculation is reduced to solving the nonlinear system of equations (3), (4). Let us consider 
equations (4) as equations with unknown x2,.., xn, y1, y2,…, yn with the parameter λ. If we find xk yk as functions of a single variable λ and 
substitute into right sides of (1), (3), we will get parametric representationof the traveltime t(X,l): 

 
t = t(X,l,λ),  l = l(X,l,λ),  λ - parameter.    (5) 

 
Accurate solution of these equations can be obtained only for laterally homogeneous media [Bolshih, Taner and Koehler]. To find 

approximate solution for laterally inhomogeneous media, we can use perturbation approach. For this, with the original velocity model with 
the interval velocities 

 
vk = vk(x), k=1, 2, …, m    (6) 

 
we consider an auxiliary model with the layered velocities depending on small undimensional parameter ε: 

 
vk(x,ε) = vk(X) + εuk(x), k=1, 2, …, m    (7) 

 
Here vk(X) are constants (for the fixed midpoint X). We assume that interval velocity variation is small as compared to the average value of 
this velocity between the points ξk-1 and ξk. Then in (3) we can consider uk(x) to be approximately the same value as vk(X) and ε to be a 
small dimensionless coefficient. 
 
We can also use a small dimensionless coefficient µ to describe boundaries: 

 
Fk(x,ε) = Fk(X) + µGk(x),   k=1, 2, …, m    (8) 

 
Perturbation theory allows us to acquire the explicit formula of the travel time tk in the inhomogeneous k-th layer. This explicit presentation 
has the form of power series of ε: 
 
   tk(ξk-1, ξk) = tk(0)(ξk-1, ξk) + tk(1)(ξk-1, ξk)ε + tk(2)(ξk-1, ξk)ε2 + … 
 
After that, we can write the system (4) - (5) as 
 

 n      n 

          ∂T/∂xk(ε,µ) = Σ∂ti/∂xk(ε,µ) = λ,           ∂T/∂yk(ε,µ) = Σ ∂τj/∂yk(ε,µ) = λ,  k=1,2,…,m. 
j=k     j=k 

 

This system has a solution that can be written as 
 

xk = xk
(0)(λ,l) + xk

(1) (λ,l)ε + xk
(2) (λ,l)ε2 + …,  

        (9) 
yk = yk

(0)(λ,l) + yk
(1) (λ,l)ε + yk

(2) (λ,l)ε2 + …,  
 

After finding the coefficients xk
(j), xk

(j), we substitute (9) into (5), solve the second equation for λ and replace λ in the first equation. This 
allows us to obtain an explicit formula for the time as a function of the midpoint X and the offset l in the form of power series of l: 
 

t2(X,l) = c0(X) + c1(X) l2 + c2(X) l4 + …     (10) 
 
Here c0(X) = t02(X), c1(X) = 1/V2

stack, where t0(X) is the normal incident time at the CDP point X and Vstack is the stacking velocity at the 
same point. For a medium with dipping boundaries, the approximate formula for normal incident tiime t0, can be written as 

 

 n       n  n 
 t0(X) = 2 Σ (hk/vk)  -  Σ hkvk [Σ (1/vi - 1/vi+1) Fi′(x)]2   (11) 

k=1      k=1 i=k 
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Here vk - is the velocity in the k-th  layer, hk - the thickness of the layer at the point x = X. The first term provides the travel time along the 
vertical ray in the model with horizontal layers. The second term gives the correction, defining the influence of the non-horizontal reflecting 
and transmitting interfaces. Practically, the second term defines the influence on the time to which is caused by the bias of the central ray 
from the vertical one. 
 
For the stacking velocity we obtain: 
 

 1    1  n-1 
      =        [1 + Σ (1/vk - 1/vk+1) Fk′′(x) ak]    (12) 

             vstack
2 vrms

2  k=1 
 
For the coefficient ak we have 
 

              n           n 
           ak = ( Σ hivi)2 / ( Σ hivi) 

         i=k+1          i=1 
 
Formulae (11), (12), obtained for the normal incident time t0 and stacking velocity V2

stack, allow us to answer the questions written in the 
introduction. 
 
Medium with the curvilinear waterbottom line 
 
Let us consider a relatively simple but important marine case with a curvilinear waterbottom. It has been empirically noted that the lateral 
behavior of stacking velocities in marine seismic often shows a relationship with the structure of the waterbottom. Work that I have 
published in the Russian literature (Blias 1981, 1984, 1987) shows how a structured water bottom will change seismically measured 
stacking velocities with respect to the RMS velocities (Fig. 2). The difference between RMS and stacking velocity from deep boundaries 
can reach 30% and more. Therefore, when the Dix formula is used to obtain interval velocities, we get large errors since this formula 
assumes that our picked stacking velocities are close to the values of the RMS velocities.  
 

 
 

      Figure 2 
 
To determine realistic interval velocities (and eventually realistic depths) we need to make corrections to the Dix formula. The main 
influence on lateral velocity changes is due to the structural curvature of the waterbottom. This suggests that the corrected Dix formula 
must include the second derivative of the water bottom horizon. Formula (12), connecting interval and stacking velocities, contains the 
second derivative of the transmission boundaries with some coefficients. 
 
For a simple example, we can consider a 2-D case with a curvilinear boundary defined by the function F(x), which we will take to be the 
water bottom. If hk is the thickness of the k-th layer and vk is the velocity in this layer, then approximate formulae that connect stacking 
velocity VStack with the interval velocity are 
 

1  1 
       =       [1 + (1/v1 - 1/v2) F′′(x) An]    
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    Vstack
2     VRMS

2 

       n     n 
     An =  ( Σ hivi)2 / ( Σ hivi). 

     i=2  i=1 
 
Here F′′(x) is the second derivative of the water bottom. If F′′(x) = 0 (a flat water bottom) then we simply have the stacking velocity 
equivalent to RMS velocity. Any difference between RMS and stacking velocities will then depend on the expression (1/v1 - 1/v2) F′′(x) An. 
Here v1 is the velocity of the water and v2 is the velocity of the first layer below the waterbottom. This value depends not only on the 
differential slowness between the water and the first sub-water layer (1/v1 - 1/v2) but also on the value of An. One can see then that as 
depth increases the number An also must increase since the numerator is the square of the summation and the denominator is just the first 
power of this sum. Lateral behavior of RMS velocity repeats behaviour of the second derivative of the function  
z = f(x), fig. 3. 
 
A similar formula for the general case of a 3D medium with curvilinear 
boundaries and laterally varying interval velocities has been obtained. The next 
step to solve the problem is to invert these formulae in order to obtain the true 
interval velocities.  
 
There can be several different approaches to apply these formulae for the case 
of a structured water bottom that we’ve been discussing. For instance, we 
could try to correct the stacking velocities by using information about the water 
bottom (its second derivative and velocities above and below) and some rough 
information about the interval velocities and boundaries – essentially we would 
have to make some estimation of the value of An. This is not particularly 
attractive since the interval velocities making up An are the values we are trying 
to estimate in the first place. 
 
An alternative approach would be to calculate corrected interval velocities 
using the picked stacking velocities and normal incident times. In other words, 
we can use stacking velocities and time t0 (with their first and second 
derivatives) to make corrections to the interval velocity values. In this case, we 
can extract 'corrected' interval velocities originally affected not only by the 
water bottom but could also correct the effects of geologic structure deeper 
than water bottom. In this second approach, we do not need any estimation of 
An in the area since these values will be obtained from the stacking velocities and  
times T0. At the same time we will need to use not only the times T0 but also       Fig. 3. Boundary and the second derivative 
its first and second partial derivatives. The corresponding formulae then become  
much more complicated.  
 
The simplest way, then, to solve the problem of extracting correct interval velocities below curvilinear water bottom is to use approximate 
explicit formulas (modifications of Dix formula discussed above). For the input data, one will need stacking velocities VStack and normal 
incidence times T0(x,y) with their (time) first and second derivatives. It should be mentioned that to decrease the error and make the 
solution more stable (and possibly to estimate its quality), it is much better to pick stacking velocities in perpendicular directions and use 
them for interval velocities calculations. 
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