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Introduction 
Geophysicists are increasingly using seismic AVO inversion to generate elastic parameter estimates. But it is not always clear how to make 
sense of this information. From pre-stack seismic data we can estimate elastic moduli – bulk modulus, Lamé’s Lambda parameter, and shear 
modulus (Mu), scaled by density (Rho) – but what do they mean? This visual poster presentation uses well log and laboratory data to extend 
rock physics knowledge of reservoir properties to seismic attributes. The goal is to understand how a reservoir’s material properties are 
expressed by its elastic parameters. This offers a secure framework to interpret seismically-derived elastic moduli in terms of rock properties 
such as lithology, fluid, and porosity. 

Seismic waves and elastic moduli: assumptions stated 
Subsurface rocks present various scales of heterogeneity. At the atomic scale, we see the orderly atomic arrangement of pure minerals. 
But in real life we are not faced with a homogeneous pure mineral; a rock is made up of different minerals, held together by grain contact 
and/or cement, and including pores occupied by fluids. All these constituents influence the rock’s elastic properties.  
 
The rock scale is the realm of core and wireline measurements [cm]. Seismic waves, however, ‘see’ sequences of rocks on the order of 
metres. Seismology is based on continuum mechanics, but at the rock scale, there will always be some averaging. That is, it is the average or 
effective elastic parameters that seismologists must deal with. In this presentation, when we say that the rock and fluid properties of a 
reservoir affect its elastic parameters and in turn, its seismic expression, we are talking about the effective or average elastic parameters. The 
presentation assumes rocks are isotropic and elastic. Further, the discussion is restricted primarily to how mineralogy, porosity, and fluid 
content influence the rock’s elastic moduli. Clearly, many other inter-related factors also influence elastic moduli (Table 1). 

Rock properties and elastic moduli 
The study of rocks is broken into studying the different constituents: the solid rock (lithology), the rock matrix (porosity), and the pore fluids.  

Lithology and elastic parameters 
A pure mineral is uniquely described by its elastic parameters, but we rarely deal with pure minerals. A real-life rock matrix is a naturally 
occurring mixture of minerals. Predicting the moduli from the constituent minerals is complex. The elastic properties of a rock depend on the 
elastic properties of the components, the relative volumes of the components making up the rock, and the microstructure.  

There are theoretical relations describing how to calculate the elastic parameters of a medium composed of a mixture of minerals. But in an 
actual rock, additional factors such as grain contacts and cementation come into play and theoretical relations are inadequate.  However, 
bounds describing the upper and lower elastic parameter values may be calculated in a straightforward fashion. Then to get more usable 
estimates we often go to empirically-derived relations. 

Empirical relations are generally some simple polynomial fit to measured observations for a particular data set, often guided by some 
theoretical insight. Empirical relations most often work very well for the data they were derived from, but fail outside the sample range. With 
empirical relations one must be careful about ascribing physical meaning to what are essentially generic mathematical formulae.  

Deterministic models are another approach to establish relations between elastic moduli and reservoir properties. Typically some simplifying 
assumptions about the geometry or microstructure are made (for example, spherical pores may be assumed). Note that these assumptions 
may be simplifying, but not necessarily geologically realizable. 

As stated, reality is complex, but we can at least calculate boundary values of elastic parameters. Theoretical bounds rigorously derived from 
basic physical principles are widely applicable, but only provide upper and lower bounds on elastic properties rather than single estimated 
values. Well-established bounds theories are those of Voigt (1928); Reuss (1929); and Hashin and Shtrikman (1963).   

The Voigt upper bound is a linear interpolation between the elastic moduli of two constituents of a two-phase composite.  Consider a 
mixture of quartz and calcite (Figure 1). At zero percent calcite, the volumetric concentration of quartz is one, and the modulus of the 
composite is that of quartz.  At 100% calcite, the modulus of the composite is that of calcite.  For other mixtures, the bound is a line 
connecting the two end members. The influence of fractional changes in the mineralogy is nonlinear, so a small change in composition can 
influence the elastic parameters significantly. Multi-mineral mixtures can have ambiguous elastic parameter values, but quartz, calcite, and 
shale are end-members and can be identified reasonably well. 
 
Porosity and elastic parameters 
Extending mixture theory, a porous rock can be thought of as a two phase mixture: void space and rock matrix. Upper and lower bounds may 
be calculated, but there are certain constraints on how to add compressibilities. For closed systems we must account for fluid effects, leading 
us to the more complicated Biot-Gassmann theory. For simplicity, we first consider the effect of porosity in an open system where we do not 
need to consider fluid effects.  That is, we first consider the dry measurements of the rock. We see that both Lambda and Mu are decreased 
by porosity, when the pores are dry. 
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Pore shape is a very important influence on seismic properties, but very difficult to quantify. It is observed (Zimmerman, 1991) that 

- a crack is more compressible than a round pore. 

- spherical pores are more incompressible, which means high Lambda values. 

- flat pores like fractures and microcracks are less resistant to compression, which means lower Lambda values. 

- Vp tends to be more sensitive to pore fluid saturation for flat pores than spherical pores. 

- Cracks close as the effective pressure increases. The influence of cracks lessens as a function of depth. This is one of the 
reasons velocity generally increases with depth.   

 
Critical porosity 
The critical porosity model (Nur, 1992) is derived from empirical observations, but is similar in form to other theoretical relations. For most 
rocks, there is a critical porosity φc which separates the rock’s mechanical and acoustic behavior into two distinct domains. For porosities less 
than φc, the mineral grains are load-bearing; for porosities greater than φc the mineral grains are in a suspension, with the fluid phase load-
bearing. Most reservoir rocks are in the grain- or frame-supporting state. In this state, porosity varies from zero to critical porosity. Many 
effective medium models relate the elastic properties of rocks to porosity over the range of porosities from 0 to 100%, and should be modified 
to recognize the critical porosity divider. 

The bounds can be re-scaled so that the high porosity end member is at critical porosity, not at 100% porosity. The upper HS bound can be re-
scaled so that the porosity interval is between 0 and φc rather than between 0 and 1.  That is, the end members will be the pure mineral 
modulus at zero porosity, and zero modulus at critical porosity.  The elastic parameters vary linearly between the mineral end point and critical 
porosity (Figure 2). 

Fluids and elastic parameters 
In order to calculate the elastic properties of a saturated rock, we need to calculate the elastic properties of the pore fluids themselves.  The 
Gassmann equation (1951) can be used to model how a fluid will influence the elastic moduli of the saturated rock. The shear modulus for a 
liquid or gas is zero.  The bulk modulus can be measured in the lab and/or can be calculated using empirical relations.  Remember that fluid 
properties will be functions of such things as chemical makeup, temperature, and pressure.  

Generally, the rock’s incompressibility is lower when the pore fluid is gas than when it is brine, and the rock’s rigidity (resistance to shearing 
force) is relatively unaffected. The gas effect is larger at higher porosities (Figure 3), and in rocks with lower bulk moduli (weak rock 
framework).   

Summary of effects for interpreting seismically-derived elastic parameters  
As noted earlier, seismic properties are affected in complex ways by many factors, such as temperature, saturation, pressure, porosity, pore 
shape, fluid type, … the list goes on. These factors are often inter-related or coupled so that many also change when one factor changes. The 
complexity of how then to interpret seismically-derived elastic parameters can be overwhelming; some framework is needed. The scope of 
investigation of this paper is limited to three key rock and fluid properties pertinent to hydrocarbon exploration: lithology, porosity, and fluid 
type. The effects on elastic parameters are summarized (Figure 4): 

Mineralogy 
For multi-mineral mixtures, the mixture occupies an ambiguous cloud in Lambda, Mu or LambdaRho, MuRho crossplot 
space.  Quartz, calcite, and shale occupy the vertices and so are less ambiguous and can be identified reasonably well. 

Porosity 
Lambda and Mu behave in exactly the same way in response to porosity, when the pores are dry.  The effect of porosity is a 
shift toward the origin in cross-plot space. 

Fluid 
Lambda is decreased by the presence of fluid; Mu is relatively unaffected by fluid. The effect is larger with increasing 
porosity. 

 
LambdaRho is a trademark of PanCanadian Energy. 
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Table 1: How some factors influence elastic parameters  

Figure 1: Elastic constants of common mineral mixtures (Hill average): Quartz-Calcite example. Note there is a nonlinear response to linear 
fractional changes. Therefore, it is possible that a small amount of the 2nd mineral can have a large influence on the effective elastic 
parameters of the mixture.  

Figure 2: Effect of porosity on elastic moduli using critical porosity model: porosity values overlain. Note that increasing porosity moves toward 
the origin. That is, Lambda and Mu are both decreased by increasing porosity (when the pores are dry) 
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Figure 3: Effect of porosity for fluid-filled minerals using critical porosity model. Note the effect of porosity for gas (red) vs. brine (blue) filled 
sandstones: better fluid detection is possible at high porosity values. Note also that dolomite has better gas-brine separation than limestone 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Interpretation template: composite display of lithology, porosity, and fluid effects discussed. 

  


