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Abstract 
For a recording aperture of dimensions M  by N , the cost of migration and modeling in heterogeneous media is proportional to 

[ ]NMMN + . To reduce this cost, we derive two efficient operators. One reduces the number of significant values in the extrapolation 

matrix by desampling the velocity field. The resulting cost is proportional to ( )mnmnMN 2log , where m and n are the dimensions of the 

desampled velocity field. The second operator restricts the number of unique velocities by rounding the velocity field to, for example, the 
nearest 10, 100 or 1000 m/s. This operator is implemented by a windowed superposition of stationary phase shifts. The cost of the second 

operator is proportional to ( )MNpMN log , where p is the number of unique velocities. Using the Marmousi seismic model, we find the 

operator based on velocity rounding returns greater accuracy for equivalent cost.  

Theory 
For one temporal frequency ω , a pseudo-differential operator solution (see Stein, 1993, p. 231) to the Helmholtz equation is (Grimbergen et 

al., 1998; Margrave and Ferguson, 1999; Le Rousseau and de Hoop, 2001) 
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where x  and y  are spatial coordinates with Fourier duals xk  and yk , z  is depth, and zk  is vertical slowness 
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We will refer to ( )zizkexp as the extrapolation symbol. Velocity v  varies in x  and y , and spectrum ϕ  is the 2D Fourier transform of the 

monochromatic wavefield obtained at surface ( )0,, yx ′′ . Equation (1) extrapolates ϕ  from surface ( )0,, yx ′′  to surface ( )zyx ,,  

simultaneously with a Fourier transform from ( )yx,  to ( )yx kk , . Because the domain change occurs without the benefit of the fast Fourier 

transform, in digital form, the computational effort required for extrapolation is proportional to [ ]NMMN + , where M  and N  are the 

dimensions of the recording aperture.   

Introduce a background velocity vv ≠~  so that 

 ( ) ( ) ( ) ( )
( )yxz

yxzyxz
kkyxk

yxvyxv
kkyxkkkyxk

,,,
~

,~,
1,,,

~
,,,

22







−






+=

ωω

,  (3) 

where 

 ( ) ( )
22

2

,~,,,
~

yxyxz kk
yxv

kkyxk −−





= ω

.  (4) 

Substituting the first order expansion of equation (3) for zk , equation (1) becomes  
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where 
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For vv =~ , where v  is constant, equation (5) is equivalent to the first-order generalized-screen operator (Wu, 1992), and the split-step 

Fourier operator of Stoffa et al. (1990). When vv =~ , equation (5) is equivalent to equation (1). Careful selection of v~  intermediate to v  and 

v  provides operators more accurate than the first-order generalized-screen operator, and less costly to implement than equation (1). For later 

comparison, Figure 1b is a snapshot of a wavefield modeled using equation (1) and the velocity field of the Marmousi model (Bourgeois et al., 
1991). A source, excited at 0=t  at the location indicated by the star on Figure 1a, propagates through the velocity field until 95.0=t  

seconds where the field is imaged.  

Desample the velocity field 
The Fourier transform of ψ~  (equation 6) is 
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When vv =~
, the cost of implementing equation (7) is proportional to [ ]NMMN +  plus the cost of computing A , ( ) ( )MNMN 2

2 log , 

plus the cost of inverse Fourier transform back to the space domain, ( )MNMN 2log . If v~  is chosen, however, such that 

 ( ) ( ) ( )yxvyxfyxv ,,,~ ∗= ,  (9) 

where f  is a high-cut filter, the number of discrete samples in the extrapolation symbol is reduced from M  by N , to Mm <  by Nn <  

(Wapenaar, 1992; Margrave and Ferguson, 1999). The cost of approximating equation (6) using equation (7) is proportional to 

( )mnmnMN 2log  to compute A , plus ( )nmMN +  to apply A , plus Fourier transform to space coordinates ( )MNMN 2log . On a 

cost only basis, the use of equation (7) is justified when ( ) ( ) nmMNmnmnNM +++>+ 22 loglog . For example, when 

1024=M , 1=N , 16=m , and 1=n , cost is reduced one order of magnitude. 

Figure 2a is a snapshot of a wavefield similar to Figure 1b, but with the velocity field desampled to 16=m . As a measure of accuracy, the 

autocorrelation of Figure 1b and the crosscorrelation of Figures 2a and 1b are computed, and the difference between their amplitudes squared 
along zero lag are plotted in Figure 3b. When compared to the result (not shown) using the first-order generalized-screen operator (Figure 3a), 
error is reduced between 4000 and 9000m, and the sum of the amplitudes is an order of magnitude less.    

Reduce the number of unique velocities 
For ( )λλ vv round~ ×= , where ( )vmin≤λ , the number of unique velocities p  in v~  is  
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Analogous to the phase-shift-plus-interpolation (PSPI) method of Gazdag and Sguazzero (1984), for each unique velocity pjv j ≤≤1 ,~ , a 

window jΩ  is constructed so that it takes on a value of 1 where v~  has the value jv
~  and is zero otherwise. Similar to Margrave and 

Ferguson (1999), equation (6) becomes: 
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Equation (11) constructs ψ~  using constant-velocity phase-shift to extrapolate the input spectrum for each jv
~ , windows jΩ  are applied, and 

the resulting wavefields are superimposed. Unlike PSPI, no interpolation is used. The cost of implementing equation (5) using equation (11) is 

proportional to p  times the cost  ( )MNMN 2log  of the 2D FFT. Implementation of equation (11) is justified when 

( )MNpNM 2log>+ . When 1024=M , 1=N  and 16=p , cost relative to equation (1) is reduced one order of magnitude. 

Figure 2b is a snapshot of a wavefield similar to Figures 1b and 2a, but with 16≈p achieved by rounding the velocity field to the nearest 150 

m/s. The cost of computing Figure 2b is similar to the cost of computing figure 2a. The resulting zero-lag squared-error, Figure 3c, shows a 
significant error reduction everywhere along the model. To approach the same level of accuracy using equation (17) (Figure 3d), 64=m  is 

required with a five-fold increase in cost. 

Conclusions 
To reduce the cost of migration and modeling, two efficient operators are derived. The first desamples the velocity field to reduce the number 

of significant values in the extrapolation matrix, and the resulting cost is proportional to ( )mnmnMN 2log , where m and n are the 

dimensions of the desampled velocity field. The second operator restricts the number of unique values in the velocity field by rounding them at 

a cost proportional to ( )MNpMN log , where p is the number of unique velocities. Using the Marmousi seismic model, the operator based 

on velocity rounding is found to be more accurate for equivalent cost.  

 
Figure 1a. Marmousi velocity model. The star marks source location. b)  Snapshot of a wavefield modeled using equation (1) and the velocity 
in (a) imaged at 95.0=t s.  
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Figure 2a. Snapshot of a wavefield using equation (7) with 16=m . b) Snapshot of a wavefield using equation (11) with 16=p . 

  

 
Figure 3. Amplitude-squared errors. a) Difference along zero lag of the autocorrelation of Figure 1b, and the crosscorrelation of Figure 1b and 
a wavefield (not shown) generated using the first-order generalized-screen. b) Difference using crosscorrelation of Figures 1b and 2a 
(desampled velocity). c) Difference using crosscorrelation of Figures 1b and 2b (rounded velocity). d) Difference using crosscorrelation of 
Figure 1b and a wavefield (desampled velocity, not shown) with 64=m . 
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