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Summary 

As a seismic wave propagates through the earth, its amplitude 
attenuates over time and frequency due to microscopic processes 
such as internal friction. Thus, the earth is an anelastic medium; on 
the other hand, Hooke’s law, which is normally used in the derivation 
of the wave equation, applies only to perfectly elastic media. Despite 
this fact, attenuation can be modeled macroscopically over typical 
seismic bandwidths via an exponential amplitude decay in both time 
and frequency, at a rate determined by a dimensionless quantity, Q. 
Current seismic deconvolution methods, based on the stationary 
convolutional model, attempt to estimate and filter out the embedded 
causal wavelet. We present a nonstationary seismic model, 
expressed in the time-frequency Gabor domain, in which (1) the 
embedded causal wavelet is represented as the product of a 
stationary seismic signature with a nonstationary exponential decay; 
and (2) a nonstationary impulse response for the earth is tractable. 
By least squares fitting our model to the Gabor-transformed seismic 
trace, we determine a unique Q-value and an estimate of the seismic 
signature, and thus an estimate of the nonstationary causal wavelet. 
Using these estimates to obtain a smoothed version of the seismic 
trace in the time-frequency domain, a least squares nonstationary 
minimum phase deconvolution filter is constructed. The preliminary 
results, coded in MATLAB, are very promising. 

Introduction 

This paper is concerned with the application of Gabor theory to 
the modelling, analysis, and subsequent deconvolution of a non-
stationary, constant-Q-attenuated seismic signal. In a broader 
context, Gabor deconvolution is discussed by Margrave and 
Lamoureux (2002). The Gabor theory sets the stage for non-
stationary analysis of a signal, “in which time and frequency play 
symmetrical parts, and which contains ‘time analysis’ and ‘frequency 
analysis’ as special cases.” (Gabor, 1946) Our experience with 
sound, as in speech or music, demands a mathematical description 
addressing time and frequency analysis on equal footings. The 
human ear, much like a hydrophone, combined with the brain’s 
processing capabilities, interprets bandlimited acoustic amplitude 
information as temporally localized packets of spectral information. 
Conversely, in following a musical score, a musician transforms a 
time-frequency representation of a signal into temporally varying 
acoustic amplitude data. 

 The Fourier theory is an idealization: it fails to capture our 
intuition that “frequency content” changes with time. “The reason is 
that the Fourier-integral method considers phenomena in an infinite 
interval, …and this is very far from our everyday point of 
view.”(Gabor, 1946) These fundamental observations suggest that 
we ought to be modelling the localized time and frequency 
characteristics of a seismic signal simultaneously; and it is the 
milestone theory of Gabor that provides us with appropriate tools.  

We first outline a derivation, to first order, of a time-variant 
spectral model for the Gabor transform of a constant-Q-attenuated 
seismic trace. Remarkably, in addition to being intuitively plausible, 
this model generalizes the familiar convolutional model (as described 
in Sheriff and Geldart, 1982, for example). Next, the model is fitted to 
the data in the least squares sense. This process provides estimates 
for both Q and the stationary part of the wavelet, and thus an 
estimate of the nonstationary, Q-attenuated wavelet. The theory is 
then applied in an algorithm for the deconvolution of a Q-attenuated 
synthetic seismogram, and the preliminary results are discussed. 

Theory 

A time-variant Gabor spectral model. Let ( )r t  be a 
reflectivity, ( )w t  a stationary source signature, and ( ),t fα  the time-
frequency symbol of a constant Q operator. Specifically for the latter 
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where H is the Hilbert transform. The stationary source signature, in 
this context, is a wavelet whose time-frequency decomposition is 
equivalent to its Fourier transform, which depends only on frequency.  
An assumption is that this Fourier transform, ( )ˆ ,w f  is smooth; by 
definition, ( ),t fα  is also reasonably smooth.  

A nonstationary synthetic trace, ( )s t , can be constructed by 
nonstationary convolution (Margrave, 1998) of the Q operator with 
the reflectivity, followed by stationary convolution with the source 
signature. Using the mixed domain form of nonstationary convolution 
(Margrave, 1998) gives 
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where the hat denotes the Fourier transform. Thus 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

2 2

2

ˆ ,

ˆ , .

if u if t

if t u

s t w f u f r u e du e df

w f u f r u e dfdu

π π

π

α

α

∞ ∞
−

−∞ −∞

−  

 
 =  
  

=

∫ ∫

∫∫
 (3) 

Now, the Gabor transform of ( )s t  is defined as 
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where ( )g t  is the Gabor analysis window, usually a Gaussian (see 
Feichtinger and Strohmer, 1998, for more on Gabor analysis). 
Margrave and Lamoureux (2002) showed that the  Gabor transform 
of ( )s t  can be factorized, to first order, as  
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Discussion of the problem. To first order, then, our Gabor-
spectral model is given by equation (5). The problem is simplified by 
considering only the magnitudes of both sides of (5), namely   

 ( ) ( ) ( ) ( )ˆ, , ,s w rτ ν ν α τ ν τ ν=
) )

. (6) 

We assume that the Gabor transform of the reflectivity is “white”, with 
a mean of unity. Precisely what is meant here by “white” is not easily 
defined but, intuitively, we mean that ( )ŵ ν ( ),α τ ν  provides the 
general spectral shape, while the Gabor spectrum of the reflectivity 
provides only detail. Thus, we drop the ( ),r τ ν

)
 term from equation 

(17) and seek a trace model as 
 ( ) ( ) /, QS W e πνττ ν ν −= , (7)  

where ,S s=
)

 ˆ ,W w=  and / ( , ).Qe πντ α τ ν− =  The equality in (7) is 
interpreted in the least-squares sense, meaning that a residual error 
with minimized L2-norm is assumed. This residual error represents 
the random ambient noise and the Gabor transform of the reflectivity. 
A further simplification is obtained by considering the logarithm of 
both sides of (7), which effectively removes the exponential term:  

 ( ) ( )ln , ln /S W Qτ ν ν πτν= −   . (8) 
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Once ( )ŵ ν  and ( ),α τ ν  are estimated, their product represents a 
smoothed version of the Gabor transform of the seismic trace, and it 
is then a straightforward matter to design a nonstationary, minimum- 
phase, deconvolution filter. 

Solution of the least squares problem. We first ft minimize 
the function ( ),W Qα α=  given by 
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with respect to Q. Equation (9) expresses the square of the L2-norm 
of the difference between both sides of (8). The domain of integration 
is finite since seismic data are bandlimited and of finite duration.  

The region of integration, Ω  must be selected to encompass 
only the numerically significant part of the time-variant spectrum of 
the signal, to avoid large errors due to division by excessively small 
numbers. For numerical implementations, it is convenient to consider 
integrals over rectangular domains. All of this can be accomplished 
by introducing a characteristic weighting function, χΩ : 
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as a factor in the integrand. For example, 
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where f is any integrand with numerically stable support Ω , and Ω  
is contained in the rectangle [ ] [ ]0 1 0 1, , .τ τ ν ν×  Any positive weighting 
function can be substituted for χΩ  at the discretion of the processor; 
but it should decay to zero in a smooth way to avoid spectral ringing.  

We will assume that an appropriate region Ω  (or weighting 
function) has been selected. Then expression (9) can be written as 
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which can be computed according to (11). Minimizing (12) with 
respect to Q amounts to solving the following equation for Q: 
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Straightforward calculations lead to the finite value: 
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Since (14) expresses Q in terms of the unknown source signature, 
( )W ν , a second expression is required. We seek an optimal 

function, ( )W ν , using the calculus of variations (see e.g., Marion 
and Thornton, 1988). Write lns S= and lnw W= , and consider an 
arbitrary variation, wδ = ( )wδ ν . Incrementing the unknown function 

( )w ν  by ( )wδ ν , expression (9) becomes 
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Notice that if we can determine a function ( )w ν  such that the middle 
term in (16) vanishes, this same function will minimize ( ),w Qα  with 
respect to w . This reduces the problem to solving  
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for ( )w ν . Since ( )wδ ν  is independent of the time, we have 
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The ν -integral vanishes for all variations ( )wδ ν , so it follows from 
the calculus of variations that the function of ν  inside the braces 
must vanish. This leads to 
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Converting back to the logarithmic notation, we arrive at 
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The first term in the exponential is the time average of ( )ln ,S τ ν , 
while the second term is linear in frequency and proportional to the 
average time for each frequency. Using a bar to denote the time 
average, (20) can be written more compactly as 
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Substitution of (21) into the expression (14) for Q yields 
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Finally, solving for Q leads to  
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Synthetic example 

MATLAB functions from the CREWES toolboxes were used 
extensively in developing the code to generate the least-squares 
estimates (23) and (21) of Q and ( )W ν , and to perform a Gabor 
deconvolution. Figure 1 displays a pseudo-random reflectivity and a 
nonstationary synthetic trace. The synthetic was built by applying a Q 
operator to the reflectivity, followed by convolution with a 20 Hz 
minimum phase source signature. The reflectivity has a duration of 
one second, with a sampling interval of 0.002 seconds. 

Figure 2 displays the magnitude of the Gabor transform of the 
reflectivity. The sample points in the time direction (row number) 
correspond to successive translations by 0.01 seconds of Gaussian 
window centers. These Gaussian windows have the property that 
their sum is approximately equal to one over the duration of the 
synthetic trace, and their half-width (0.1 seconds) has been selected 
such that this criterion is met. Each row is computed as the discrete 
Fourier transform of the windowed trace that is centered at the 
corresponding offset time. Each sequence of coherent peaks, for 
instance those at about 1 second, corresponds to a zone of high 
amplitude in the reflectivity of Figure 1. 

The magnitude of the Gabor transform of the synthetic trace is 
depicted in Figure 3. Since the Q-operator represents an exponential 
decay surface in time and frequency, its logarithm forms a surface 
whose contours are hyperbolae, decaying in magnitude according to 
the product of the time and frequency values. This explains the 
general decay pattern from the top left toward the bottom right in 
Figure 3. There is a progressive loss of bandwidth and mean 
amplitude over time. 

Figure 4 displays a weighting function, designed to match the 
decay pattern of the data, to eliminate data falling below machine 
precision. This filter was used in the calculation of the integrals in 
equations (23) and (21) in the manner illustrated in equation (11). 
This produced an estimated Q value of 28.3, marginally greater than 
the correct value of 25, and the estimated source signature, whose 
smoothed Fourier spectrum is plotted with that of the original source 
signature in Figure 5. Smoothing of this wavelet spectrum, by 
convolution with a boxcar, was applied to remove small oscillations 
inherited from the reflectivity.  
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Figure 6 displays the magnitude of the least-squares model of 
the data, calculated as 

   ( ) / estQ
est

w v e πντ−  , (24) 

where the subscript est refers to the least-squares estimates. As 
expected, the amplitude decays smoothly, and resembles a smeared 
version of the display in Figure 3. Thus, we refer to this least-squares 
model as a smoothed representation of the data. The deconvolution 
operator is approximately the pointwise inverse of (24), combined 
with the associated nonstationary minimum-phase spectrum. Here, a 
small positive function, called a stability factor, was added prior to 
inversion to prevent division by small numbers.  

 Cross sections of the input and least-squares-modelled Gabor 
spectra at time t = 0.5s, plotted in decibels, appear in Figure 7. The 
plot illustrates the effect of the stability factor, which causes the 
model to deviate from the synthetic data above about 80Hz. 
Mathematically, the exponential constant-Q operator should decay 
exponentially over all frequencies, but the plot shows that this is only 
achieved along the linear trend from about 20Hz to 75Hz. In our 
noise-free simulation, this is because of limited precision in the 
calculations; however, increased numerical precision would only 
mask the real problem of limited precision in seismic recordings. 

Figure 8 shows the spectra of the original reflectivity and the 
Gabor deconvolution result. Whitening has been limited to below 
125Hz – half of Nyquist, by a stationary bandpass filter. The two 
spectra agree quite well over the whitened band. Ultimately, the 
precision problem mentioned in the previous paragraph limits the 
degree of whitening that can be achieved. Since the contours of the 
constant-Q operator are the hyperbolae, τν = constant, the 
maximum possible whitening will be time-variant. 

Figure 9 compares the original reflectivity with the least-squares 
Gabor deconvolution result. The reflector locations are correlated 
very well, although the amplitudes are slightly mismatched. Figure 10 
compares this deconvolution result with a bandlimited version of the 
original reflectivity (DC to half Nyquist). All things being equal, this 
bandlimited version of the reflectivity is a good benchmark by which 
to compare our results, since it arguably represents the best that one 
could expect to obtain.  

 Figure 11 displays the (DC to half Nyquist passed) time-variant 
amplitude spectrum of the reflectivity estimate. Its conformity with the 
spectrum of the true reflectivity (Fig. 2) is quite remarkable. 

Conclusions 

A derivation, to first order, of a time-variant spectral model for 
the Gabor transform of a constant-Q-attenuated seismic trace was 
outlined. Using differential calculus and the calculus of variations, the 
model was fitted to the data in the least squares sense. This yielded 
estimates for Q and the seismic signature, and thus an estimate of 
the nonstationary, Q-attenuated wavelet. The theory was numerically 
evaluated via an algorithm for the Gabor deconvolution of a 
synthetic, Q-attenuated seismic trace. The illustrated example used 
an exceptionally low input Q-value, yet returned very promising initial 
deconvolution results. These favourable results, clearly reinforced by 
the fact that our model includes the convolutional model as a special 
case, strongly motivate further research in this direction. 
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Figures 

 
FIG. 1. A pseudo-random reflectivity (lower) and a nonstationary 
synthetic (upper) generated with an attenuation factor of 25. 

 
FIG. 2. Magnitude of the Gabor transform of the pseudo-random 
reflectivity of figure 1. 
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FIG. 3. Magnitude of the Gabor transform of the trace of figure 1. 
 

 
FIG. 4. Time-variant filter for weighting the Gabor spectrum of the 
synthetic trace according to the numerical precision of the data. 

 
FIG. 5. Fourier amplitude spectra of the original and output seismic 
signatures. The output signature was smoothed with a boxcar to 
remove small residual oscillations. 

 
FIG. 6. The magnitude of the smoothed spectrum, which models the 
data in a least-squares sense. The point-wise inverse defines the 
magnitude of the deconvolution operator. 

 
FIG. 7. Time slices of the input and least-squares-smoothed Gabor 
spectra at time t = 0.5s, plotted in decibels. A small stability constant 
was added to the smoothed Gabor spectrum to avoid division by 
excessively small numbers. 

 
FIG.8. Fourier amplitude spectra of original reflectivity and Gabor 
deconvolution result. 

 
FIG. 9. The pseudo-random reflectivity of figure 1 (upper), and the 
bandpass-filtered Gabor deconvolution result (lower). 

 
FIG. 10. Comparison of the bandpass-filtered Gabor deconvolution 
result (lower) with a bandpass-filtered (DC to half Nyquist) version of 
the reflectivity of figure 1 (upper). 
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Fig. 11. The time-variant, bandlimited amplitude spectrum of the 
reflectivity estimate. Compare with the Gabor amplitude spectrum of 
the true reflectivity in figure 2. 

 

 


