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Summary 

A nonstationary deconvolution technique based on the Gabor 
transform was applied to a synthetic trace, attenuated by a constant 
Q quality factor. Gabor deconvolution compensates for the time-
variant frequency attenuation, which is the main cause of the 
nonstationarity of seismic signals, as well as, inverts the source 
signature. To do this, the source signature and the Q attenuation 
surface must be estimated by smoothing the Gabor transform of a 
seismic trace. Among the many types of the smoother techniques, 
two alternate methods are compared in this work. In the first method 
of smoothing, a 2D boxcar is convolved with the magnitude spectrum 
of the Gabor transform of the trace. In the second case, the Q 
attenuation surface is estimated by smoothing the magnitude 
spectrum along hyperbolic contours of =τf constant in the time-
frequency plane. Then, the source signature is estimated by 
removing the attenuation surface and averaging over time. The result 
obtained from the hyperbolic smoother shows much more accurate 
amplitude restoration while the result of the 2D boxcar smoother is 
strongly whitened but has equalized amplitudes over time, much like 
an AGC.  

Introduction 

The Gabor deconvolution presented in this work is based on a 
particular case of the Gabor transform that uses a Gaussian function 
to achieve temporal localization. Multiplying the signal by a Gaussian 
centred at time ,τ  the result is a modified signal that is a function of 
two times, the fixed time, ,τ  and the running time, t. A suite of 
localized traces are generated by repeating this operation as the 
Gaussian function is translated along the signal. If at every fixed time 

,τ a Fourier transform is applied, the result is a time-frequency 
decomposition. Using a white reflectivity assumption, seismic 
deconvolution can be conducted in this 2D (time-frequency) plane by 
estimating the deconvolution operator through smoothing the 
magnitude of the Gabor spectrum of the signal.  In this paper, the 
deconvolution operator is derived from the magnitude spectra of the 
Gabor transform in two ways, through a 2D convolution with a boxcar 
of certain dimensions in time and frequency or smoothing the 
magnitude spectrum on hyperbolic contours of =τf constant. The 
resulting deconvolution operator inverts both, the source signature 
and the attenuation surface. A minimum-phase assumption is used 
to provide the phase of the deconvolution operator.  

Nonstationary convolutional model and the 
deconvolution algorithm  

The nonstationary convolutional model (Margrave and 
Lamouroux, 2002) considers the earth attenuation effect acting on 
the source waveform. This model adjusts the well-known stationary 
convolutional model by introducing a constant Q attenuation function. 
Recovering an estimate of the reflectivity in the Gabor domain is a 
spectral factorization problem. The Gabor transform of the seismic 
signal must be factored into source signature, attenuation, and 
reflectivity components.   

A detailed mathematical description of Gabor deconvolution is 
given by Margrave and Lamoureux (2002). Here a summary of the 
spectral factorization problem of the deconvolution in Gabor 
domain is presented. Taking the Gabor transform of a seismic 
trace and considering just the absolute values of the Gabor spectra 
denoted by the modulus symbol, we get 
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where ( )fτS ,
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 is the magnitude of the Gabor spectrum of a trace, 
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∧

 - the magnitude of the Fourier spectrum of the source 

signature (stationary), ( )fτα ,  is the magnitude of the attenuation 

function, and ( )fτR ,
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 is the magnitude of the Gabor spectrum of 

the reflectivity. 

The relation between the attenuation α, in equation (1) and the 
quality factor Q is (Kjartansson, 1979) 
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In order to estimate the reflectivity from the trace, first, we 
estimate the source signature and the attenuation function.  
Assuming that the reflectivity series has the statistical properties of 

random white noise such that ( ) 1, =fτR
)

 (where the overbar 

denotes smoothing), a smoothed version of the magnitude Gabor 
spectrum of the seismic signal will give an estimate of the 
embedded wavelet combined with the attenuation function. Two 
techniques of smoothing will be discussed next in this paper. First 
the boxcar smoother will be discussed and second, hyperbolic 
smoothing will be presented. 

The boxcar smoother 

Smoothing the Gabor magnitude spectrum of the seismic trace 
through a 2D convolution with a 2D boxcar tends to suppress the 
reflectivity information and will therefore, estimate the source 
signature of the spectrum times the attenuation function. In this case, 
the attenuation and the source signature are estimated as a single 
entity and the size of the boxcar in time and frequency significantly 
affects the result. The frequency dimension of the smoothing window 
determines the number of the points to be smoothed along the 
frequency axis and controls the temporal size of the assumed source 
signature estimate. Shorter source signatures have smoother 
spectra. The time dimension of the smoothing operator determines 
the number of spectral points to be smoothed in time. This parameter 
controls the nonstationarity of the deconvolution. The longer this 
value, the more stationary the deconvolution becomes. 
Consequently, smoothing the magnitude Gabor spectrum will yield a 
combined estimate of the source signature and the attenuation 
function 
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Thus, the magnitude spectrum of the deconvolution operator will 
have the form 
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where ε is a small real number and Amax  is the maximum value of 
the smoothed Gabor spectrum (equation (3)) introduced to avoid 
any division by zero. 

The phase information is calculated from the amplitude 
spectrum of the deconvolution operator with the Hilbert transform, 
assuming the minimum-phase condition,  
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and the deconvolution equation in the Gabor domain has the form 
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This estimate of the Gabor transform of the reflectivity can be 
inverse transformed (Margrave and Lamouroux, 2002) to give the 
reflectivity in the time domain. 

The hyperbolic smoother 

The attenuation function described in equation (2) is constant 
for =fτ  constant, that is, along a hyperbola in the time–frequency 
plane. Therefore, an average of equation (1) along such a hyperbolic 
contour will estimate the magnitude of the attenuation function 
provided that the reflectivity and source signature terms average to 
unity along the contours. Without further justification, we assume this 
is nearly the case and explore the consequences of hyperbolic 
smoothing. 

Hyperbolic smoothing is achieved by calculating the average 
of the Gabor magnitude spectrum on constant time-frequency 
hyperbolae contours. Let fτσ =  be a hyperbolic contour of 

=fτ constant. Then, let ( ) fσfτ /= , and the hyperbolically 
smoothed Gabor spectrum is given by 
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In equation (7), ( )
est

fτα ,  denotes the hyperbolically smoothed 

spectrum, an estimate of the attenuation surface. Smoothing the 
magnitude spectrum on hyperbolic contours means that, along 
every hyperbola on the time-frequency plane, an average value is 
computed.  

Dividing the Gabor magnitude spectrum by the hyperbolically 
smoothed spectrum, the attenuation information is removed and 

the source signature can now be estimated. Let    ( )fτµ ,  denote 
this non-attenuated spectrum,                                                               
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The (stationary) source signature can be estimated after averaging 

( )fτµ ,  over time as 
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Smoothing this result by convolution with a frequency boxcar will 
improve the source signature estimate. 

Next, the deconvolution operator is derived by multiplying the 
source signature (equation 9) at all times with the hyperbolically 
smoothed spectrum, estimated attenuation described by equation 
(7), and inverting the result,  
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where εAmax  is the same as in equation (4).  

Next, the minimum-phase information and the estimated 
reflectivity can be calculated in the same way as in the boxcar 
smoother case (equations 5 and 6). 

Example 
In Figure 1A is illustrated a random reflectivity that has a low 
amplitude interval located between 1.5 – 3 seconds. The minimum-
phase source signature convolved with this reflectivity model was 
attenuated with a constant Q filter (Q=25). This represents the 
input trace, before deconvolution (Figure 1E). In Figure 1B, is 
illustrated the reflectivity after a minimum-phase bandpass filter 
has been applied in the Gabor domain. The high-cut value of the 
filter was set to a maximum 0.7 of the Nyquist frequency, this value 
decreasing hyperbolically (on a contour of =τf constant) for 
longer times (Figure 2). This bandlimited reflectivity will be 
compared with our deconvolution results. Since the frequency 
bandlimit tracks along a hyperbolic path in time-frequency domain, 
it corresponds to some constant power level in the attenuation 
function. Given a constant power background noise, we expect the 
signal to drop below noise level along such contour. The 
deconvolution results are also bandpass filtered with the same 
filter. Figure 3 is the Gabor magnitude spectrum of the attenuated 
trace (Figure 1E). Figure 4 is the magnitude Gabor spectrum of the 
filtered reflectivity (Figure1B). Comparing figures 3 and 4 the effect 
of the constant Q attenuation function can be clearly seen. In 

Figure 5 is illustrated the product ( ) ( ) estfταfW },ˆ{ , as 

described by equation (3). This is the smoothed magnitude 
spectrum in the boxcar case. The time dimension of the boxcar 
was set to 0.5 seconds and the frequency dimension was 10 Hz. 

The result of the deconvolved trace using the boxcar smoother 
is illustrated in Figure 6.  The spectrum of Figure 6 is obtained by 
dividing the spectrum of Figure 3 by that of Figure 5. Analyzing 
these figures in the Gabor domain (Figures 4, 5 and 6), as well as 
the traces in the time domain (Figures 1B, 1C and 1D), it is 
apparent that the boxcar has equalized the amplitudes -in the weak 
and strong reflectivity zones. It can be concluded that the boxcar 
has an effect similar to an AGC operator applied to the trace while, 
as will be discussed below, the hyperbolic smoother restored more 
accurately the relative amplitudes. 

In Figure 7 is the result of the product ( ) ( )
estest

fταfW ,ˆ , as 

described by equation (10) before inversion. In Figure 8 is the 
result of the hyperbolic smoother (Gabor domain), the trace at 
position 1D in Figure 1.  The spectrum of Figure 8 was obtained by 
dividing the spectrum of Figure 3 by that of Figure 7. 

A physically valid estimate of ( ) ( )fταfW ,ˆ must show 

steadily decreasing power with increasing time. In particular, the 
estimate of Figure 5 cannot be physically correct because the 
power increases abruptly at about 3 seconds. The low power zone 
from approximately 1.5 seconds to 3 seconds is a residual imprint 
of the reflectivity that was not removed by the boxcar smoother. 
The estimate of Figure 7 is much more plausible though we cannot 
prove that hyperbolic smoothing will always give a correct result.  

 In Figure 9 at position A is the Fourier magnitude spectrum of 
the entire trace deconvolved with the boxcar (Figure 1C). At 
position B is the Fourier magnitude spectrum of the same trace 
windowed between 0 to 1.5 seconds and at position C, windowed 
between 1,5 to 3 seconds. The whitening achieved by the boxcar 
filter is excellent in all three cases. In the case of the hyperbolic 
smoother, the whitening level achieved after deconvolution is 
illustrated in Figure 9, positions D, E, and F. At position D is the 
Fourier magnitude spectrum of the entire trace that was 
deconvolved with the hyperbolic smoother, while at position E and 
F are the windowed intervals between 0 to 1.5 seconds and 1.5 to 
3 seconds, respectively. In the hyperbolic smoother case, the 
magnitude spectrum is slightly less white than in the case of the 
boxcar smoother. 



 

  3 

Conclusions and future work 

The relative amplitudes are more correctly restored by the 
Gabor deconvolution performed with a hyperbolic smoother. In the 
boxcar smoother case the restoration of the relative amplitudes is 
poor and this constitutes a major drawback of this type of smoother. 
The temporal size of the smoother, as well as the length in frequency 
are important parameters in designing the deconvolution operator 
but in any case, the result of the boxcar smoother will be limited by 
the fact that it cannot provide simultaneously a satisfactory whitening 
level and amplitude restoration. In Figure 9, all magnitude spectra 
show good whitening in local time intervals but the amplitude 
restoration is similar to an AGC. The low amplitude interval between 
1.5 to 3 seconds was severely distorted by the deconvolution 
(compare  trace  C with B in Figure 1). In the time interval from 0 to 
1.5 seconds, or 3 to 4 seconds, the relative ratio of the amplitudes  
between the reference trace, B, and the output trace, C, was better 
preserved. When the length of the boxcar smoother in time is smaller 
than a critical interval (the low amplitude interval from 1.5 to 3 
seconds in this example) the smoother fails to restore the relative 
amplitudes and provides a biased result. 

The superiority of the hyperbolic smoother comes from the form 
of the Q attenuation function in equation (2). Figure 7 illustrates an 
estimate of the attenuation combined with the source signature of the 
trace in the time-frequency plane obtained from the input trace, 
equation (10), before inversion. Physically this estimate is more 
plausible than the estimate provided by the boxcar smoother (Figure 
5). When analyzing the Fourier magnitude spectrum of the 
deconvolved trace on different time intervals, in the hyperbolic 
smoother case, (see Figure 9, D, E and F) it can be noticed that the 
degree of the whitening is not at the same level as in the boxcar 
smoother case. For all three intervals analyzed (the entire trace in 
example 9D, from 0 to 1.5 seconds in example 9E, and from 1.5 to 3 
seconds in example 9F) the degree of decaying of the power in 
frequency domain is relatively constant in all cases.  

 In a future work, a different method of estimating the 
source signature can be applied. There are many possibilities to 
estimate the wavelet, and a weighted average can replace the 
simple average in equation (9).  
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Figures 

 
FIG. 1. Time domain results. 1A is the exact reflectivity trace, 1B is 
the bandpass filtered version of trace 1A(using the filter of Figure 2). 
Trace 1C is the result of the deconvolution using a boxcar smoother. 
Trace 1D is the deconvolution result from the  hyperbolic smoother 
algorithm. Trace 1E is the attenuated trace (Q=25) that was input to 
the deconvolutions. 
 

 
FIG. 2.  Nonstationary bandpass filter. 

 

 
FIG. 3. Gabor magnitude spectrum of the attenuated trace (Figure 
1E). This is displayed with a high gain to show subtle detail but the 
amplitude roll-off below 10 Hz is suppressed. 
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FIG. 4. Gabor magnitude spectrum of the filtered reflectivity  (Figure 
1B). 

 
 

 
 

FIG. 5  Smoothed Gabor magnitude spectrum in the boxcar case 
(equation 3). This is displayed with a high gain to show subtle detail 
but the amplitude roll-off below 10 Hz is suppressed. 

 

 
FIG. 6. Gabor magnitude spectrum of the deconvolved trace, boxcar 
smoother, size 0.5 sec. x 10 Hz in time domain trace at position 1C in 
Figure 1). 

 
 

 
 
 
FIG. 7. Smoothed Gabor magnitude spectrum, hyperbolic smoother 
case. Equation (10) before inversion. This is displayed with a high 
gain to show subtle detail but the amplitude roll-off below 10 Hz is 
suppressed. 
 

 
FIG. 8. Gabor magnitude spectrum of the deconvolved trace, 
hyperbolic smoother.  

 
FIG. 9. Comparison of the Fourier spectra of the two smoothers.  
A, B, C – Fourier magnitude spectrum of the trace deconvolved with 
a boxcar. A – whole trace, B - windowed between 0-1.5 seconds, C - 
windowed between 1.5-3 seconds.  
D, E, F – Fourier magnitude spectrum of the trace deconvolved with 
the hyperbolic smoother. D – whole trace, E - windowed between 0-
1.5 seconds, F - windowed between 1.5-3 seconds. 


