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Abstract 
Seismic data interpolation problem can be posed as an inverse problem where from inadequate and incomplete data one attempts to recover 
the complete band-limited seismic wavefield. The problem is often ill posed due to the factors such as inaccurate knowledge of bandwidth and 
noise. In this case, regularization can be used to obtain a unique and stable solution. In this abstract, we formulate band-limited data 
interpolation as a minimum norm least squares type problem. An adaptive DFT-weighted norm regularization term is used to constrain 
solutions. In particular, the regularization term is updated iteratively using a smoothed version of the peridogram of the estimated data. The 
technique allows for adaptive incorporation of prior knowledge of the data such as the spectrum support and the shape of the spectrum. 

Introduction 
The problem of interpolation/resampling seismic data from its incomplete observations arises in many processing steps that requires a regular 
sampling. Many methods has been proposed, for examples, prediction error filtering based method (Claerbout, 1992; Splitz, 1991), dip 
moveout based interpolation (Biondi, 1999), Fourier based interpolation (Cary, 1997; Duijndam et al., 1999; Hindriks et al, 1997). Among those 
methods, Fourier based reconstructions do not make geological (geophysical) assumpions other than the data to be reconstructed are 
spatially band-limited. The methods start by posing the interpolation/resampling problem as an inversion problem where from inadequate and 
incomplete data one attempts to recover Fourier coefficents of complete seismic wavefield. However, the problem is often effectively under-
determined which, as is well known, can be satisfied by many solutions. In this case, a regularized solution can be used where the regularizer 
(weighting function) serves to impose a particular feature on the solution. The criteria to choose a suitable weighting function have been 
discussed by several researchers (Cabrera and Thomas, 1991; Duijindam et al., 1999; Hindriks et al., 1997; Sacchi and Ulrych, 1998; 
Zwartjes and Duijndam, 2000). The essential ideal is to incorperate as much limited prior knowledge as possible. e.g. a regularizer imposed by 
the Cauchy distribution can be used to obtain an estimation of Fourier transform with sparse distribution of spectral amplitudes in Fourier 
domain (Sachhi and Ulrych, 1998); a weighting function based on the distance between samples or the area surrounding samples is effective 
in nonuniform Fourier reconstruction of irregular sampled data along one or two spatial coordinates (Duijindam et al., 1999; Hindriks et al., 
1997). 

In this abstract, a band-limited seimic data interpolation method is developed in space domain. The method is equivalent to a Fourier domain 
reconstruction when discrete Fourier transform is used to obtain the solution (Liu and Sacchi, 2001). In particular, we have modified the least 
squares approach to include an adaptive DFT-weighted norm regularization term which incorporates a priori knowledge of energy distribution 
in wavenumber domain that deals with the ill posed band-limited signal interpolation problem. And, unlike conventional method, the bandwidth 
of the data is not assumed to be known in our approach. An adaptive frequency weighted norm scheme has been proposed by Cabrera and 
Parks (1991) to extropolate time series. In their approach, the method of modified periodiom is used to obtain adaptive weights from a 
previous estimation of the time series. In our approach, the weighting function is updated through iterations using a smoothed version of the 
periodogram. The smoothing was done by convolving a suitable function which is useful as a mean to reduce to irregularity in the spectrum 
introduced by missing samples. In addition, we show that the iterative regularization can be done very efficiently using FFT and preconditioned 
conjugate gradient algorithm. The new method can be applied to seismic data in any domains with one or two spatial coordinates. Finally, 
examples illustrate effectiveness of the method for 3D real seismic data interpolation. 

Adaptive weighted regularization 
We will denote y  the length- M  vector of observations and x  the length- N  vector of unknowns such that 

 

                                  

where T  is the M N×  sampling matrix of the problem. The interpolation problem can, therefore, be posed as an inverse problem where 
from inadequate and incomplete data y  one attemps to recover complete data x . Note that the problem is rank deficient. The uniqueness of 
solution of the problem can be imposed by defining a regularized solution by solving the problem which is often expressed by 

 

 

where 2|| ||⋅  stands 2l norm, µ  is a specified weighting factor controls the trade off between the data norm and misfit of observations. In this 
abstract, we have modified the regularization in (2) using DFT-weighted norm, in which case the particular object function to be minimized is 
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Here || ||P⋅  denotes DFT-weighted norm defined by 

 

 

 

where kX  is DFT of x , k  is the DFT index, Ω denotes the pass-band of the data and 2
kP is a positive function which is similar in shape to 

the power spectrum of the unknown data . In equation (3), taking drivatives of ( )wrJ x and equating to zero yields the following result 

 

 

Where Q  is a circulant matrix which can be decomposed into 

 

 

and 2P is a diagnal matrix with diagnal entries equals to 2
kP . 

Iterative solution 
To obtain the above regularization solutions, in practice, one should know the power spectrum of the data to obtain the weighting function Q . 
Unfortunately, x  is the unknown of our problem. The latter can be overcome by defining an interative ( )nQ using a smoothed version of the 
periodogram of perviously estimate of data ( 1)nx − . Furthermore, let 1/ 2g x−= Q , equation (5) can be solved using a Q1/2 preconditioned CG 

 

 

 

Note that 1/ 2 ,H=Q F P CG iterations can be implemented very efficiently using FFT. Finally, the estimation of x  can be obtained using 
1/ 2x g= Q . The extension of above iterative algorithm for 2D interpolation is straightforward in which case CG is implemented using 2D FFT. 

Examples 
In Figure 1, we show an example of 3-D seismic data interpolation along two spatial coordinates using above algorithm.  Figure 1a) shows a 
post-stack data cube include 51 lines in the y-direction and 31 lines in the x-direction. Figure 1b) shows an incomplete data cube where 
approximately 50% lines in the y-direction are randomly removed from the original data cube and Figure 1d) shows an incomplete data cube 
where approximately 50% traces of the data cube (in Figure 1a)) are randomly removed. The incomplete data cubes are used as the input to 
test our interpolation algorithm. The interpolation is carried along  the x and y directions simutanously. The results are shown in Figure 1c) and 
Figure 1e) respectively. In both case, the interpolation method yields a good estimation of unknown data with small error.  

Conclusions 
In this abstract, we formulate band-limited interpolation as minimum norm least squares type problem where an adaptive DFT-weighted norm 
regularization term is used to constrain solutions. The method enables us to incoorprate both band-width and spectrum shape of the data as a 
prior knowledage into the band-limited data interpolation problem. And unlike conventional band-limited data interpolation, the bandwidth of 
seismic data is not assumed to be known in the weighted norm interpolation. The adaptive regularization algorithm is implemented using a 
preconditioned CG and FFT. It is very efficient and can be applied to seismic data in any domains with one or two spatial coordinates. 
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Fig. 1. 3-D seismic data interpolation along two spatial coordinates. (a) A post-stack dat
lines in the y direction are randomly removed from the original data.  (c) Result of interp
where 50% traces are randomly removed from the original data. (e) Result of interpolati
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a cube.  (b) Incomplete data where 50% 
olation from (b).  (d) Incomplete data 

on from (d).  


