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Introduction 
This is an investigation of the problem of constructing a porosity 
model from multiple sources of information, considering a certain 
degree of uncertainty associated with each one of these sources. A 
methodology for porosity inference is developed using fundamental 
concepts of the Bayesian methodology, which is the direct use of 
probability theory as a method of inference. The main goal in 
Bayesian methodology is to obtain the posterior probability density 
function (PDF) for parameter under investigation, which serves to 
answer all questions of inference. The posterior is the product of two 
functions: the prior PDF, which carries prior information about the 
unknown porosity, and the likelihood function, which carries data-fit 
information. In this work, we consider the combination of elastic 
seismic attributes and well log data in the process of obtaining the 
likelihood function.  

Seismic data have been the main source of information for 
determining reservoir properties in the interwell region. The most 
frequently employed methodologies are based on multivariate 
regression, which treat the data as spatially independent, or 
geostatistics. The latter is highly dependent on a model of spatial 
variability constructed from the data. 

In this work, we follow the local approach of Moraes and Scales 
(2000), to derive marginal probabilities for porosity at a particular cell 
of the reservoir instead of working with the joint distribution. The final 
solution is given by a set of posterior distributions for interval porosity 
given the well log and seismic attribute data. Questions of inference 
such as estimates or associated uncertainty is addressed to these 
posteriors. 

The posterior distribution for porosity is obtained, considering only 
prior information about bounds on porosity variation and data 
generated from seismic attributes, composed by P and S wave 
velocities (Vp and Vs, respectively) and density (ρ), and well logs 
(porosity, sonics (P and S wave), density and gamma ray). 
Equations from rock physics are used to relate seismic attributes to 
porosity. We assume that the seismic attributes are provided by a 
generic seismic inversion program without any kind of uncertainty 
analysis. 

The application of the methodology follows a two step procedure. 
First, we run a separated inversion in each well, following the work 
described by Loures and Moraes (1999). Next, we propagate the 
well information to the interwell region, using variability measures 
and their corresponding formula. This information and the 
information derived from seismic attributes are both represented in 
terms of likelihood functions. These functions are then combined 
with the prior distribution by simple use of Bayesian rules for deriving 
posterior probability distribution. A synthetic data example for 
reconstructing a slowly varing porosity model illustrates how the 
methodology works. 

Methodology 
Consider a reservoir model composed by a set of N block cells with 
average porosity φ ∈ RM. Our problem is to find the porosity of the ith 
cell φi, i=1,…,M, represented simply by φ, using elastic seismic 
attributes Vp, Vs and ρ, respectively represented by s=(s1, s2, s3)

T ∈ R3N, 
and additional data carrying information about the spatial variability 
of reservoir porosity, which is represented by v ∈ RL.  

Our choice is to make v a set of experimental porosity-porosity 
variogram values computed from subsurface porosity information, 
after integration of multiple well log data sets by a 1-D Bayesian 
inference procedure of Loures and Moraes (1999). These authors 
have shown that the integration of different types of well log data 
provides a considerable reduction of systematic and random 
components of error, which may occur when deriving porosity 
estimates from a single type of well log data. The source of 
uncertainty is specific of each type of log, e.g. logging tool calibration 
processes. The 1-D Bayesian well log inversion methodology 
provides a porosity model for a set of depth intervals at multiple well 
locations and the associated uncertainty. This is represented in 
Figure 4 by a color images corresponding to 5 diferent well location. 
The color variation represents the probability density for porosity at a 
fixed depth along the well. 

Bayesian formulation 
According to the Bayesian methodology, the solution to this problem 
of inference is given by the posterior PDF for porosity given the data. 
This posterior distribution can be obtained by application of Bayes' 
Theorem which gives 
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where q(φ) is the prior distribution, representing any information 
which are independent from data, and l(v,s|φ) is the likelihood 
function. The latter corresponds to the data distribution, representing 
the uncertainty in the data and incorporating the relations between 
porosity and the data. 

Assuming that the only relevant prior information comes from lower 
and upper bounds on porosity (φl and φu), an uniform distribution can 
be assigned for the prior. In this case, a standard procedure in 
Bayesian inference is to incorporate the prior into a proportionality 
constant. So the posterior becomes a normalized product of two 
data distributions: 
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In this work, we assume lack of information regarding the method 
used to obtain seismic attributes making it an independent process. 
This is often the situation when using commercially available 
software to generate attribute volumes. Although we admit that 
correlations and higher order moments exist, they are not known. In 
this case, assuming an uncorrelated model is a more conservative 
decision than adopting any ad hoc correlation model which may bias 
the estimates.  
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Assigning probabilities  
Next task is to define mathematical forms for the likelihood functions 
lp(v|φ) and ls(s|φ). To do that, it is first necessary to specify the 
relations between data and the unknown porosity. In our case, 
assuming additive errors in the data, we may write  

3,,1,)( Λ=+= iiii efs φ                                            (3) 

and  
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In the first case (fi, i=1,2 and 3), we seek for equations of seismic 
attributes as a function of porosity. These are available in the rock 
physics literature. For instance, Eberhart-Phillips et al. (1989) derive 
empirical formulas for Vp and Vs, which are given by 
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where Pe is effective pressure and c is the clay content. For density, 
we use  
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where ρm is the matrix density and ρf  is the pore fluid density. 

In the case of modeling operator f4, our choice of  the experimental 
variogram data v as the measure of spatial variability of porosity  
makes f4 the variogram function. This function involves pairs of well 
log porosity values φ and the unknown cell porosity, which is given 
by 
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where ri and ri+h represent two different locations separated by a lag 
vector h of size h and NP is the number of pairs. 

Next, we select the normal PDFs to describe the errors in 
equations (3) and (4). According to the maximum entropy criterion 
(Jaynes, 1978), this implies that first and second order moments 
are, for our purposes, appropriate to describe the uncertainty in the 
data.  

 
Figure 1: The image representing the true porosity model used in 
the synthetic data example. Vertical lines show the locations of 5 
well distributed across the model. 

 
 
 

 
Posterior probabilities  
Mathematically, normal distributions depend on two parameters, 
mean and variance. Consequently, choosing normal distributions to 
describe errors in the data introduces new parameters into the 
posterior distributions, the data variances. These are unknown which 
we have no direct interest in infering. Marginalization of the posterior 
distribution is a standard tool in Bayesian inference to eliminate 
parameters such as these. This marginalization process consists of 
integrating the posterior distribution with respect to data variances. 
Integration of normal distributions with respect to the variance  yields  
t-student distributions. 

If the above procedure is carried out in our porosity inference, the 
final porosity posterior distribution is a t-student distribution.  Useful 
inferences can be taken from a measure of a central tendency for 
the estimates of porosity (e.g. mean or mode) and the length of an 
interval of a fixed probability for a measure of the associated 
uncertainty. 

Implementation 
Using a moving window, running across the reservoir, a distribution 
ls(s|φ) is calculated for center position of each window (the data 
vector s is the seismic attributes from cells falling inside the window). 
The Fresnel Zone can be considered for defining the dimension of 
the window, allowing it to vary across the reservoir. In the same way,  
lp(v|φ) is also computed for each cell position. Finally, both 
distributions are combined by the application of Equation (2) to yield 
one posterior distribution for each cell of the reservoir.  

The final results are represented by two images of the discretized 
reservoir. One image shows the mode of the posterior distributions, 
representing the final estimated porosity model, and another image 
shows the length of 0.95 posterior probability centered at the mode, 
representing the associated model uncertainty.  

A synthetic data example is presented to show how this 
methodology works. Three different tests are performed to evaluate 
the importance of each set of data v and s in increasing the 

Figure 2 Synthetic well log data for the first well represented in 
the model of Figure 1. These are, from left to right, neutron 
porosity, sonic logs (P and S waves), density and gamma ray. 
All log data are corrupted with pseudo random gaussian noise. 
In addition, the porosity neutron log has a shift of 10 % of the 
true porosity model to simulate a calibration error. The green 
line in the porosity log plot represents the true porosity. 

Figure 1. Image representing the true porosity model used in the 
synthetic data example. Vertical lines show the locations of 5 
wells distributed across the model. 
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confidence of porosity estimates: using only data set s, which gives 
the posterior p(φ|s) ∝ l(s|φ)q(φ), using only the data set v, which gives 
p(φ|v) ∝ l(v|φ)q(φ), and using both data sets ( p(φ|v,s) ∝ l(v,s|φ)q(φ) ).  

Synthetic data example  
Using a 2-D model of vertical and lateral changes in porosity (Figure 
1) and equations (5), (6) and (7), we simulated all required data: 
neutron porosity, P and S-wave sonics, density and gamma ray logs 
and seismic attributes of Vp, Vs and ρ. The gamma ray log is used to 
obtain information about clay content of the medium, which is 
required in equations (5) and (6). The clay content c of this model is 
constant and is equal to 0.5. 

All simulated well log data are corrupted with pseudo-random 
gaussian noise with zero mean. Additionally, a systematic error 
component of 10 % is included in the neutron porosity log. The noise 
corrupted logs are shown in Figure 2. In the case of seismic 
attributes, the standard deviation of the noise is defined based on 
examples of elastic inversion available at literature (e.g., Debski and 
Tarantoa (1995)), respectively 10 %; 20 % and 30 % for Vp, Vs and ρ. 
The noise corrupted seismic attributes, which are shown in Figure 3, 
constitutes data vectors si, for i=1,2,3. 

As described above, the first step in the application of the proposed 
methodology is to proceed with the inversion of well log data. Figure 
4 shows the resulting porosity PDFs for each depth interval along 
the wells. The mode of these PDFs are estimates for interval 
porosities at the wells. Data vector v is generated from the well 
porosity estimates using experimental horizontal variogram 
calculated with a lag spacing of 2 km. 

The next step is the evaluation of both functions ls(s|φ) and lp(v|φ) to 
compute the posterior as their product. To do that, we use an 
interpretative model composed of cells 100 m wide by 10 m thick. A 
moving 2-D window, covering three cells (10 x 300 m), is used to 
obtain the likelihood in each cell of the reservoir. As explained 
before, to evaluate the individual contributions of well information 
and seismic attributes data, the posterior distribution is computed 
using three different data combinations: using well and attribute data 
individually (p(φ|s) and p(φ|v)) and both data sets combined (p(φ|v,s)).  

The porosity models obtained by the mode of posterior 
distributions are shown in Figure 5. At the top (Figure 5a), one can 
find the result obtained just from the use of variogram data (v). The 
middle figure (Figure 5b) shows the result obtained just from the 

use of seismic attribute data (s). Finally, Figure 5c shows the result 
of using both data types (v and s). Reasonable models of porosity 
are obtained. The model shown by Figure 5a has a horizontal 
variation pattern characterized by step variations. The positions of 
these steps are related to the lag limits and well positions. The 
model shown by Figure 5b has high frequency horizontal variations 
derived from the random noise in the seismic attribute data. The 
Figure 5c shows a porosity model that has a more slowly varying 
porosity than the model from Figure 5a and no high frequency 
variations around the well position, where the data v has more 
influence on the estimates. 

 
Figure 4: Images representing the distributions for interval porosity 
for each well from the model (Figure 2), as the results of the 
application of the inversion procedure by Loures and Moraes 
(1999). For a fixed depth interval, the color scale gives the 
posterior probability density distribution for porosity. Porosity 
estimates are taken from the mode of the posterior at each depth 
interval. The spread of the distribution around the mode gives an 
idea of the associated uncertainty.  

Figure 6 shows the length of centered interval having 0.95 
probability, corresponding to each one of the estimates in Figure 5. 
This gives a measure of the spread of the posterior and the 
resolution for porosity of each cell of the reservoir. The Figure 6a 
shows that the data v is more informative for cells near the well 
than for cells away from the wells. The Figure 6b shows that the 
information about porosity contained in the seismic attributes is 
homogeneously distributed across the model, yielding high 
frequency variations on the estimates. The Figure 6c shows us an 
improvement of the resolution of a model when the porosity 
information from both well log and seismic attributes data are 
integrated by the bayesian formulation. 

 

Figure 3: Seismic attributes Vp, Vs and ρ respectively the 
images from top, meddle and bottom calculated from the 
geologic model (Figure 1), using the petrophysical models 
given by equations (5), (6) and (7) and corrupted with 
pseudo random gaussian noise with mean zero. 
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Figure 5: Images representing the modes of the posterior 
distributions by the use of variogram data (A), seismic attributes 
(B) and both data sets (C). 

 
Figure 6: Length of the 0.95 probability interval of the posterior 
distributions obtained from the inversion of variogran values (A), 
seismic attributes data (B) and both data sets (C). 

Conclusion  
We presented an approach to reservoir characterization fully based 
on the inversion theory, which is capable of integrating multiple data 
sets in a straight forward way. The commonly employed formulations 
of the mathematical physics relating data and model parameters is 
replaced by empirical formulas of experimental rock physics. 
Geostatistics is also integrated through the experimental variogram 
and the corresponding formula, both used in the context of inversion 
theory. A synthetic data test using a slowly varying model 
demonstrated the consistency of the proposed methodology.  

Analysis of results show reasonable reconstructions of the true 
porosity model obtained from the mode of the posteriors. The 
associated uncertainty, represented by the length of 0.95 probability 
intervals, consistently vary depending on the amount of information 
available. Higher resolution is obtained at the wells. The variogram 
fitting procedure allowed to describe the information about the 
porosity from the wells at interwell location. For the inversion of 
seismic attributes alone the level of uncertainty varies 
homogeneously across the model. When combining variogram and 
attribute data, we observe that the overall uncertainty is reduced and 
the porosity model is better reconstructed. 
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