
 

  1 

Gabor deconvolution 
Gary F. Margrave* - Geology and Geophysics and Michael P. Lamoureux - Mathematics and Statistics, 
University of Calgary 

 
 

Summary 

We present a novel approach to nonstationary seismic 
deconvolution based upon the Gabor transform.  The latter is based 
upon the quantum mechanical idea that a signal can be represented 
in terms of sinusoids that are modulated by translated Gaussian 
windows.  The resulting time-frequency decomposition is an suite of 
local Fourier transforms which displays any nonstationary spectral 
trends, and where the interrelationship between individual 
transforms is well-understood..  In a result that generalizes the 
seismic convolutional model, we show that the Gabor transform of a 
nonstationary seismic signal is given by the product of source 
signature, Q filter, and reflectivity effects.  We then use this spectral 
factorization theorem as a basis for a new deconvolution algorithm 
in the Gabor domain.  Essentially, we estimate the Gabor spectrum 
of the underlying reflectivity directly from the Gabor spectrum of an 
attenuated seismic signal.  Tests on synthetic and real data show 
that our method works well and combines the effects of source-
signature inversion and a data-driven inverse Q filter.  In 
comparison with a stationary Wiener deconvolution, our Gabor 
deconvolution is similar within the Wiener design gate and superior 
elsewhere. 

Introduction 

In 1946, Dennis Gabor, the inventor of the hologram, proposed 
the expansion of a wave in terms of Gaussian wave packets.  An 
example of such a wave packet is a sine wave multiplied by a 
Gaussian function.  If a signal is modulated (multiplied) by a 
Gaussian window of a certain width and central time, then a Fourier 
expansion of the modulated signal gives a measure of the local 
spectrum.  Clearly such a spectrum is not unique since the width of 
the Gaussian is arbitrary; but nevertheless, such local spectra are 
extremely useful.  If a collection of local spectra is computed for a 
suite of window positions, the result is a time-frequency 
decomposition called a Gabor transform.  Furthermore, if the signal 
can be reconstructed from this decomposition, then a nonstationary 
filter can be achieved by modifying the decomposition before 
reconstruction. 

In this paper we present the theory of the continuous Gabor 
transform and only an approximate theory for the discrete transform.  
The modern theory of the discrete Gabor transform is usually 
attributed to Bastiaans (1980).  A complete overview of the theory of 
the discrete Gabor transform is found in Feichtinger and Strohmer 
(1998).  Our approximate discrete transform does not exactly 
recreate the original signal but the loss can be made as small as 
desired.  Next, we apply the continuous Gabor transform to a 
mathematical model of a nonstationary seismogram to show how 
the Gabor spectrum factors into wavelet, Q filter, and reflectivity 
components.  Finally, we use these tools to develop a seismic 
deconvolution algorithm that is a direct extension of standard (e.g. 
Wiener) methods to the nonstationary case.  The resulting 
minimum-phase deconvolution technique simultaneously 
accomplishes the tasks of source waveform inversion and 
(apparent) inverse Q filtering. 

The Gabor transform 

Following Mertins (1999), we define the continuous Gabor 
transform of a signal s(t) as 
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where ( )g t is the Gabor analysis window and τ  is the location of 
the window center.  Although we use ( )g t  as a Gaussian function, 
the theory works well for quite general windows including Dirac 
delta distributions.  Given ( ),s f

) τ , the signal can be reconstructed 
from the expression 
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where ( )tγ  is the Gabor synthesis window.  The analysis and 
synthesis windows must satisfy the condition 

 ( ) ( ) 1g t t dtγ
∞

−∞

=∫ . (3) 

Given equation (1) and the condition (3), the derivation of equation 
(2) is straightforward and can be found in Mertins(1999). 

Though the discrete Gabor transform can be formulated as a 
lossless process, we choose a simpler, approximate approach.  Our 
approximation relies upon a special property of Gaussians that links 
the Gaussian width with the spacing between Gaussians.  That is, it 
is possible to choose a set of Gaussians such that 
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with T  being the Gaussian (half) width.  More precisely, it can be 
shown that 
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Here the second term estimates the error (all remaining terms are 
exponentially smaller) in the approximation.  Thus the error can be 
made arbitrarily small by increasing the ratio /T τ∆ .  The maximum 
error is –21 decibels for / .5T τ∆ = , -85 decibels for / 1T τ∆ = , -150 
decibels for / 1.5T τ∆ =  and -340 decibels / 2T τ∆ = .  Thus for 

/ 1.5T τ∆ > , the error is negligible for most geophysical purposes.  

Using relation (4) as an equality, we decompose a seismic 
signal into Gaussian slices as 
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where the Gaussian slice is ( ) ( ) ( )ks t s t g t k τ= − ∆ .  Next we apply a 
forward Fourier transform 
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where ŝ  is the Fourier transform of s  and 
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is our approximate Gabor transform.  As written, it is discrete in the 
window position coordinate, as indexed by k, but continuous in 
frequency f.  Of course, in a computer implementation, we would 
replace the integral Fourier transform with the DFT. 

The recovery of the original signal follows by simply taking the 
inverse Fourier transform of equation (9) 
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Thus the discrete Gabor transform is simply summed over k and 
then inverse Fourier transformed.  Figure 1 shows a synthetic 
seismic signal and the result of running that signal through the 
forward and inverse Gabor transform, with no processing in the 
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Gabor domain.  The signal is recreated with excellent fidelity except 
for a slight amplitude loss at either end.  This end effect persists 
about one Gaussian width ( 2T ) from each end (.2 seconds in this 
case).  The actual magnitude of the end effect has been reduced in 
this example by the simple normalization procedure 
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where ( )h t  is given by equation (4). 

Gabor factorization of a nonstationary trace model  

We now present a trace model that includes the source 
waveform and the nonstationary effects of dissipation as predicted 
by the constant-Q model though it does not explicitly model 
stratigraphic filtering.  First we consider the effect of constant Q and 
model it as 
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where ( )r τ  is the reflectivity sequence and the constant-Q transfer 
function is 
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where H  denotes the Hilbert transform over f  at constant τ .  
Equation (12) can be understood as a nonstationary convolution by 
noting that the f  integral can be written as 
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so that 
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which is a nonstationary convolution filter as defined by Margrave 
(1998). 

As defined by equation (12), sQ models dissipation for an 
impulsive source.  We simply apply a more general source 
signature with a stationary convolution and write our final 
nonstationary trace model as 
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where ŵ  and ŝ  are the Fourier transforms of the source signature 
and the nonstationary seismic trace respectively.  Equation (16) is a 
replacement for the familiar stationary convolution model.  We 
prefer to express it in the Fourier domain for simplicity.  The 
attenuated signal of Figure 1 was generated using this equation with 

25Q =  and ( )ŵ f  specifying a minimum phase source signature 
with a dominant frequency of 20 Hz. 

We have derived an asymptotic result for the Gabor transform 
of ( )s t , whose Fourier transform is given by equation (16), as 
 ( ) ( ) ( ) ( )ˆ, , ,Qs f w f f r f
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where the ≈  sign means that this is the leading term in an 
asymptotic series.  (Space does not permit us to include our 
derivation here but we will provide the details upon request.) In 
words, the Gabor transform of our nonstationary trace is 
approximately equal to the product of the Fourier transform of the 
source signature, the constant Q transfer function, and the Gabor 
transform of the reflectivity.  Since, for fixed τ , the Gabor transform 
is just a Fourier transform, this is a temporally local convolutional 
model. 

Figure 2 shows the magnitude of the Gabor transform of the 
attenuated signal of Figure 1.  It was computed with 0.1T =  s and 

0.01τ∆ =  s.  In Figure 3 is the Gabor magnitude spectrum of the 
random reflectivity series used to generate the synthetic signal of 
Figure 1.  Figure 4 shows the magnitude of the constant-Q 
attenuation surface ( ( ),Q fα τ ) and Figure 5 displays ( )ŵ f  as an 
invariant function of time.  The product of the spectra of Figures 3, 
4, and 5 is the model expressed by equation (17) and is shown in 
Figure 6.  Comparison with Figure 2 suggests the model is quite 
effective in this case. 

A Gabor deconvolution algorithm 

We propose a method of deconvolution that estimates the 
Gabor transform of the reflectivity from the Gabor transform of a 
nonstationary seismic trace.  From equation (17), this amounts to 
dividing the Gabor spectrum of the seismic trace by estimates of the 
source waveform and the Q transfer function.  As with stationary 
deconvolution, this is an inherently nonunique spectral factorization 
problem that requires assumptions about the three components of 
the right side of equation (17).  From the outset, we will work only 
with the magnitude of equation (17) and, when an estimate of 

( ) ( )ˆ ,Qw f fα τ  (we call this the spectrum of the propagating 
wavelet) is available, a minimum-phase function will be calculated 
for it.  We assume that ( ),r f

) τ  is a rapidly varying function in both 
variables as is seen in our example in Figure 3.  In contrast, ( )ŵ f  
is assumed to be independent of τ  and smoothly varying in f  
while ( ),Q fα τ  is an exponential decay surface in both variables 
(see Figures 4 and 6). 

The simplest Gabor deconvolution algorithm estimates 
( ) ( )ˆ ,Qw f fα τ  by smoothing ( ),s f

) τ  by convolving over ( ), fτ  
with a 2D boxcar.  Often this is a surprisingly good estimate though 
it is strongly dependent upon the dimensions of the boxcar.  There 
are many variations on this basic method such as using smoothers 
of different shapes (triangles or Gaussians for example).  The basic 
drawback to the smoothing approach is that it will always result in a 
biased estimate of ( ) ( )ˆ ,Qw f fα τ .  To see this, suppose we have 
an extremely lucky case where ( ),r f

) τ  so that ( ),s f
) τ  is already 

equal to ( ) ( )ˆ ,Qw f fα τ .  Then, because the smoother will always 
alter the function to which it is applied, we obtain the wrong answer. 

Many other spectral factorization methods are possible.  
Grossman et al. (2002) show how the model of equation (17) can 
be imposed on a measured Gabor spectrum by least squares, 
thereby obtaining estimates of Q and ( )ŵ f .  Iliescu and Margrave 
(2002) compare simple spectral smoothing with a 2D boxcar to 
smoothing along curves constantfτ = .  In any case, let ( ), f

)σ τ  
symbolize a suitably smooth approximation to ( ),s f

) τ  such that it is 
an acceptable estimation of ( ) ( )ˆ ,Qw f fα τ .  Then we calculate a 
phase function via a Hilbert transform as  
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where we assume that ( ), f
)σ τ  has been designed to have no 

zeros.  Given ( ), f
)σ τ  and the phase from equation (18) it is a 

simple matter to calculate ( ), f
)σ τ  and estimate the Gabor 

spectrum of the reflectivity as 
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Examples 

Figure 7 shows a smoothed rendition of Figure 2 that we take 
as a suitable estimate of ( ) ( )ˆ ,Qw f fα τ .  In this case, smoothing in 
f  was accomplished by computing a Burg spectral estimate 

(Claerbout, 1976) corresponding to the Fourier estimate in Figure 2.  
Then smoothing in τ  was done by convolution with a boxcar of 
length 0.1 seconds.  Then dividing the spectrum of Figure 2 by that 
of Figure 7 and applying a stationary filter to reject frequencies 
above 125 Hz gives the estimate of the Gabor spectrum of the 
reflectivity shown in Figure 8.  Comparison with Figure 3 shows that 
the estimate is quite good.  Figure 9 shows the Gabor spectrum of 
the attenuated signal after it has been processed more 
conventionally with AGC and Wiener deconvolution.  The Wiener 
design gate was from 0.35 to 0.65 seconds.  This shows the familiar 
behavior that the Wiener operator over whitens data at earlier times. 

Figure 10 compares the Gabor deconvolution result with 
several other traces in the time domain.  The Gabor result matches 
the bandlimited reflectivity very well and has a much whiter and 
more stationary appearance than the AGC+Wiener result.  The 
Fourier amplitude spectra of these traces are shown in Figure 11.  
Again there is a good correlation between the Gabor result and 
bandlimited reflectivity while the Weiner result is less similar. 
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Figures 12 and 13 compare Gabor deconvolution with 
conventional Wiener deconvolution on a real seismic shot record.  
The Wiener design gate was from 1.0 to 1.6 seconds and within this 
zone the results are superficially similar.  However, a detailed 
inspection shows phase and amplitude differences and a different 
response to ground roll.  Also apparent is that the Wiener result is 
dramatically inferior to Gabor above the design gate. 

Conclusions 

We have described the Gabor transform in both continuous 
and discrete forms.  Using a simplified nonstationary trace model, 
we derived a spectral factorization in the Gabor domain that is the 
basis for our deconvolution procedure.  Our Gabor deconvolution 
estimates the propagating wavelet spectrum by smoothing the 
magnitude of the Gabor spectrum of the seismic trace.  Phase is 
calculated by a minimum phase assumption.  Finally reflectivity is 
estimated by dividing the Gabor spectrum of the seismic trace by 
the estimate of the propagating wavelet.  Our examples show that 
this new technique works well, usually giving better results than a 
conventional approach using Wiener deconvolution. 
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Figures 

 
Figure 1.  A synthetic seismogram with attenuation (bottom) is 
shown after a forward and inverse Gabor transform (middle) and the 
difference is on top. 

 
Figure 2.  The Gabor (magnitude) spectrum of the attenuated signal 
of Figure 1.  Darker shading indicates greater values. 

 
Figure 3.  The Gabor (magnitude) spectrum of the reflectivity used 
to make the attenuated signal of Figure 1. 

 
Figure 4.  The magnitude of the constant Q attenuation surface. 

 
Figure 5.  The magnitude of the source-signature surface. 
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Figure 6.  The product of the time-frequency surfaces of Figures 3-
5.  This is a model for the actual Gabor spectrum of Figure 2. 

 
Figure 7.  The estimate of the “propagating wavelet” spectrum 
derived by smoothing the Gabor (Burg) spectrum corresponding to 
Figure 2. 

 
Figure 8.  The result of dividing the Gabor spectrum in Figure 2 by 
that in Figure 7.  This is the estimate of the Gabor spectrum of the 
reflectivity. Compare with Figure 3.  A stationary highcut filter has 
been applied to reject frequencies above 125 Hz. 

 
Figure 9.  The Gabor spectrum of the result of performing AGC 
followed by Wiener deconvolution of the attenuated signal of Figure 
1.  This is the Gabor spectrum of the trace shown in Figure 10. 

 
Figure 10.  The attenuated signal of Figure 1 is shown (bottom) 
compared with a conventional AGC->Wiener deconvolution 
(second) and a Gabor/Burg deconvolution (third) and finally a 
bandlimited reflectivity (top).  The reflectivity and the Gabor 
deconvolution have been bandlimited to less than 125 Hz. 

 
Figure 11.  The Fourier spectra (entire trace) of the signals in Figure 
10. 

 
Figure 12.  A seismic shot record processed with Gabor 
deconvolution. 

 
Figure 13.  The same seismic shot record as Figure 12 processed 

with exponential gain and Wiener deconvolution. 


