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Abstract 
Seismic waves propagating in an absorbing medium suffers from frequency dependant energy attenuation and phase distortion. These Q 
effects can removed by inverse Q filter. Usually, methods of inverse Q filtering are model based , i.e. a Q model that can simulate the Q effects 
is first adopted and then the inverse Q operator is found by mathematically inverting this modeling. However, the cost for calculating the 
inverse operator is computationaly expensive and some approximations are introduced. In this paper, we show that the most popular way of 
simply reversing the sign at the exponential term on the Q modeling operator will fail to give the expected results. We present a fast and 
accurate model based Q inverse algorithm together with numerical examples . 

Introduction 
The attenuation of seismic energy by the earth, and the resulting nonstationary of the recorded seismic traces, are fundamental problems in 
the  processing of seismic data. Attenuation causes a loss of high frequency energy with increasing traveltime and also a time varying 
distortion of wavelet phase. Therefore, a number of different data processing techniques that provide a correction for seismic frequency loss 
(e.g. zero phase deconvolution, time variant spectral whitening) have been developed. The time varying phase distortion is often far more 
problematic. Wavelet phase, is of particular inportance if the processed data is to be input into inversion schemes that extract lithlogical 
information, e.g. Lame Parameters . The energy attenuation and phase distortion caused by the absorbing  medium can be removed by 
inverse Q filtering . Futterman (1962) demonstrated that many researchers had attemped to derive an an inverse Q filter for showed that 
sound propagating through an absorbing medium. One technique that is used for approximate Q-compensation is to construct  inverse filters 
within short windows of data. However, for accurate phase compensation, the number of windows need to be very large and the computational 
cost becomes expensive. Robinson (1979) derived an algorithm that corrected for the frequency dependant time shift caused by dispersion, 
by using frequency-shifting interpolated values of the Fourier transform of a data trace. Hargreaves et. al. (1991) further developed this 
method into one that is comparable to the Stolt’s migration algorithm. With fast Fourier transforms this method is highly efficient to implement. 
However, when applying this method to variant Q model, recursion has to be applied. Therefore, the efficiency of this method is case 
dependent. Hale (1981) found that inverse Q filtering in time domain can be more efficient than that in frequency domain because the length of 
the operator used is much shorter.Therefore, he derived a faster inverse Q filter in time domain (Hale, 1981). In order to obtain more 
computational efficiency, Hale (1982) further extended his algorithm by a series expansions of the inverse Q-filter operator. However, this 
method is found to over compensate for the later events in seismogram. In order to obtain a resonable amplitude, the amplitude spectrum of 
the computed filter has to be clipped at some maximum gain to prevent undue amplication at later times. This gain limitation causes not only 
the ambiguity of amplitude but also influences the phase action of the filter since the minimum phase spectrum of his algorithm is determined 
by the clipped amplitude spectrum. Therefore, while the Hale’s approach is efficient, the result could be one that is not desired. Moreover, a 
key problematic issue is that the inverse Q-filter operators in the methods , mentioned above , are based on the inverse operator which  which  
was derived derived from the reversed sign approximation of the forward Q model. Therefore, some approximations are implicitly introduced. 
As we will show later ,such a inverse operator itself may introduce the error that could lead to misleading results. 

Methods review 
Futterman (1962) showed that a compressional wave propagating through an absorbing medium undergoes a frequency dependent 
attenuation :  
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where Q is the quality factor, τ is the travelpath time, W(f,τ,z) is the amplitude spectrum of the propagating wave in pure elastic medium, f is 
frequency , and  H(.) is  the Hilbert transform to ensure the causal signal. With constant Q with frequency assuption, Futterman (1962) derived 
the Q model as 
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where 
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and fc is cut-off frequency. In equaton (2), the phase velocity is dependent on frequency, as a result of the requirement that a wave propagating 
in an absorbing medium must be causal (Aki and Richard, 1980). Actually, both equation (1) and (2) are equivalent when Q is assumed to be 
independant on frequency. Equation (1) has another form (Hale, 1981) 
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Equation (4) can be considered as a nonstationary convolution while equation (1) is also a nonstationary convolution. The relations between 
both equations are discussed in detail by Margrave (e.g. Margrave, 1998) 

In equation (3), the phase item in equation (1) is now replaced explicitly by a velocity dispersion relation. Equations (1) and (2) are equivalent 
when   the frequency is equal to Nyquist frequency, which can be seen easily by a numerical test, because both of them are satisfied by the 
requirement of causality. The attenuation increases with both increasing frequency and increasing travel path length , and phase velocity 
increases with frequency up to an upper cut-off frequency .Now, let us discuss the problem in a ideal case scenario, i.e. no noise and  no 
multiples, then both forms of convolution and combination can be formulated as a matrix equation (e.g. Margrave, 1998) 
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Where AQ is the matrix created by applying a Q response to a time series via a generalized convolution. Each column of the Q matrix contains 
the impulse response for the input time of that column convolved with source waveform. Then, the inverse Q can be calculated by solving 
matrix equation (5). However, cost of solving equation (5) is thought to be too high and not practical (e.g. Hale, 1982) because of the huge 
dimensions of the matrix. Instead, the inverse of the matrix is approximatly calculated via inverse operator (e.g. Margraves et al. 1991, Hale, 
1982) 
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In equation (6), the inverse operator is simply the reverse sign at the exponential term on the Q modeling operator. It gives an approximate 
inverse of Q matrix because the operator is not orthogonal compared to that of the pure Fourier Transform kernel. Therefore, there are 
limitations in the use of equation 6. 
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7. Impulse response at 1.8 seconds time delay. 



 
Inverse Q filter 
Based on the discussions above, the exact inverse provides an accurate result. However, the inverse of a N by N matrix needs at least N3 
Flops (floating point operations)  which may prohibit it’s use for the practical applications. In this section, we discuss how to solve the inverse Q 
Problem in the time domain.  

The cost of computation is composed of two parts : the first is calculate the elements of the Q forward matrix ,and the other the other is to find 
a the solution of the  inverse matrix. First, we will propose a method to calculate the matrix in time domain. With equation (5), we first have  to 
first calculate each impulse response in frequency domain and then  inverse Fourier transform it into time domain. Each step involves natural 
log and exponential operations. Taking a careful look at figure 1, it is shown that the matrix is most dominated by the near terms to the 
diagonal and the Q modeling responses is a practically δ like function. The spectrum of each response is wide. This property tells us that the 
operator in time domain is much shorter than that in the frequency domain. Another property is that the spectrum of each impulse response is 
very smooth. Taking  these two properties into consideration ,it is seen that only a small number of samples in the frequency domain are 
required  for the calculation of the  time domain impulse response. In the example shown above, only 32 frequency samples are selected to be  
input  into the calculation. If the trace sample is 1024, then we can gain 30 times improvement in computation time compared to considering all 
the samples. Figure 8 shows the comparison of the results of impulse responses at 1.2 second  are nearly exactly the same as the input. This 
gain of efficiency cannot be obtained if we solve the equation in frequency domain, such as Hargreaves's method (Hargreave, 1991).  

The  compution  the inverse of a Q matrix could  indeed be expensive. However, the matrix is a narrowly banded low trianglar matrix.  Instead 
of computing  the inverse matrix, we propose to solve the equation directly.  The solution  for a banded lower trianglar matrix  is very well 
developed and very fast. For example, given a chosen diagonal band width K, the the penalty for solving equation 4 is only 2*K*N  flops 
,where N is the dimension of the matrix (Golub and van  Loan,1996). This cost is almost equivalent to the matrix  multiplication. Therefore, with 
the band matrix solver, we should  have nearly same efficiency as that of Hale's method (Hale, 1992). However, the accuracy is guarateed. 
Figure 9 shows the result from previous example and the three-unit impulse is exactly restored.   
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