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Summary 
F-xy eigen filtering performs random noise suppression on 
stacked 3-D seismic volumes using eigenimage analysis along 
constant-frequency slices. The method performs equally well on 
flat or dipping events and is independent of many x- and y-
consistent effects. The method gives results comparable to f-xy 
prediction filtering but with far fewer calculations. 

Introduction 
Andrews and Patterson (1976) demonstrated how the singular 
value decomposition, or SVD, can be used for noise suppression 
and lossy data compression of digital images. The SVD is defined 
as (Golub and Van Loan, 1996) 
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We will consider A to be a square matrix of dimension n,  but 
rectangular matrices are handled just as easily. U  and V  are n-
by-n unitary matrices whose column vectors iu  and iv  are the 
left and right eigenvectors of A , respectively. Σ  is a real 
diagonal matrix whose diagonal elements iσ , known as the 
singular values, are ordered such that 
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It is easy to show  
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The matrix iI  is referred to as the i’th weighted eigenimage. For 
nk ≤  define )(AkF , the k’th partial sum of A , as 
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This is known as the truncated-SVD, or reduced-rank, approx-
imation of .A  It is optimal in the sense that it solves for M  
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where |||| ⋅  can be either the Frobenius or matrix 2-norm. We are 
not restricted to integer values of k. For instance, we can define 
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)(AkF  becomes an increasingly better approximation to A  as k 
increases, until finally .)( AA =nF  We generally, however, 
require only a few eigenimages to generate a reasonable image 
(Figure 1). 

 

Figure 1:  Eigenimages (top) and partial sums (bottom) of a 48x48 
pixel image of the letter K. Only a few of the eigenimages are needed 

to generate a reasonable image. Summing all 48 eigenimages 
produces the original. 

Many noise suppression schemes transform the data into a 
domain where signal and noise map onto separate regions. Eigen 
filtering is similar – it assumes that coherent energy maps onto the 
first few eigenimages, and that incoherent energy maps onto the 
remainder (or at least is more evenly distributed.) Figure 2 
demonstrates this for a noisy letter T. 

Figure 2: A 48x48 pixel image of a noisy letter T decomposed into the 
sum of its first 2 weighted eigenimages, containing most of the signal, 
and the sum of the remaining 46 eigenimages, containing most of the 

noise.  

Ulrych, Freire, and Siston (1988) investigated a variety of seismic 
applications for eigenimage analysis, including noise suppression, 
dip filtering, separation of wavefields in vertical seismic profiles, 
and residual statics corrections. Although their noise suppression 
technique was not described in detail, it is (apparently) in the t-x 
domain and probably does not give satisfactory results for dipping 
reflectors. 

Methodology 
Eigenimage analysis can be adapted to suppress noise in stacked 
3-D volumes of seismic traces. Start with an n-by-n grid of stacked 
trace (typical dimensions might be 20 by 20.) The method, which I 
call f-xy eigen filtering, is as follows:  
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The amount of attenuated noise can be increased by increasing 
the grid size n and most importantly decreasing k, the number of 
eigenimages summed in (Figure 3.) By doing so, however, we 
also increase the chance of distorting the coherent signal. In 
practise typical values for k are 1 (harsh), 2 (strong), and 3 
(moderate). 

Figure 3: Inline slice through a noisy artificial volume showing the 
effects of eigenimage filtering with different values of  k. Filtering 

becomes harsher as k decreases. Although k = 1 has removed most of 
the noise, the difference plot (the removed energy) shows it has also 
removed the weaker event. The result for  k = 2 is more acceptable. 

Properties 
The SVD is well understood, allowing us to establish a number of 
results about eigen filtering (assume integer k.) They justify us 
working in the f-xy domain since all but the last property do not 
generally hold when working on, for example, constant-time 
slices. 

Exactness Property: If a noiseless seismic section contains no 
more than k dips then AA =)(kF .  

In other words, eigen filtering does nothing to noiseless seismic 
data with a restricted number of dips (Figure 4.) The exactness 
property is the critical result, allowing us to consider eigen filtering 
even for structured data. A similar property was shown by 
Canales (1984) for f-x prediction filtering. 

Filtering Property: If a noiseless seismic section contains no more 
than k dips, and then has x- and y-consistent filters applied, then 

AA =)(kF .  

Statics Property: )(AkF  is independent of x- and y-consistent 
statics. 

This means we can apply x- and y-consistent statics, eigen filter 
the data, correct the statics, and get the same thing as if we had 
filtered the data without statics. The previous two properties 
suggest that eigen filtering may be useful for removing noise from 
prestack data before deconvolution or statics. 

 

Figure 4: The exactness property. Shown is an inline slice through an 
artificial volume with four events but only three distinct dips. 

Eigenimage filtering with k=3 does nothing to the original data since 
the number of eigenimages equals the number of distinct dips. 

Ordering Property: )(AkF is independent of the x and y ordering of 
the matrix. 

This means we can reorder the matrix in an x- and y-consistent 
manner, eigen filter the data, undo the reordering, and get the 
same thing as if we had filtered the matrix directly. It suggests that 
eigen filtering behaves well at the grid boundaries since from the 
filter’s point of view there are no boundaries.  

Projection Property: )())(( AA kkk FFF = . 

In other words, it is no good applying eigen filtering twice in a row 
since the second pass does nothing. Mathematically this is 
because )(AkF  is an orthogonal projection onto the set of n-by-n 
matrices of rank k. 

Fast Approximations 
Calculating the SVD is expensive (run time is comparable to f-xy 
prediction filtering using typical parameters for both), and most of 
the generated information is ignored. There is, however, a low-
cost alternative. Lanczos bidiagonalization (Golub and Van Loan, 
1996) consists of decomposing a matrix A into the form 

HQBPA =  

where P  and Q  are unitary matrices and B is a real bidiagonal 
matrix of the form 
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We need not carry this out to completion. By halting after the 
calculation of the first k columns of P  and Q  (call them kP  and 

kQ ) and the first k rows and columns of B  (call it kB ), we can 
define 

.)( H
kkkkL QBPA =  

Simon and Zha (2000) show that )(AkL  is an approximation to
,
 

)(AkF , and for small k can be calculated at a fraction of the cost. 
Since it is an approximation, some deterioration in results is 
expected. On real data the difference between the original and 
Lanczos methods is usually, but not always, minor. 

Take the DFT of each trace. 

For each frequency… 

     Form the n-by-n complex-valued matrix A  from the  
     DFT value of each trace. 

     Calculate )(AkF  for some small value of k. 

     Replace the trace DFT values with the )(AkF  values. 

Take the inverse DFT of each trace. 
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To address the occassional inaccuracies of Lanczos filtering I 
developed a hybrid method. The first step calculates the Lanczos 
approximation out to k + r rather than k steps, where r is perhaps 
2 or 3, giving 

.)( H
rkrkrkrkL ++++ = QBPA  

This is an approximation to )(ArkF + . For an approximation to 
)(AkF  apply )(⋅kF  to the central matrix only, giving 
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I call this the “double-truncated SVD”. Calculating )( rkkF +B  
requires an SVD. It is still, however, much faster than calculating 

)(AkF  because rk+B  has much smaller dimension than A , is 
real rather complex, and is bidiagonal rather than dense. These 
effects compound so that the SVD takes only a small part of the 
total run time. With r = 2, double-truncated SVD runs about five 
times faster than the original method but gives essentially the 
same results. 

Data Results and Discussion 
Figure 5 compares eigen filtering and its natural rival f-xy 
prediction filtering (Chase, 1992), on a flat, moderately noisy 3-D 
section. For the selected parameters there is little to choose 
between the two methods. The difference plots (that is, the 
removed noise) show that neither has removed much coherent 
energy. 

It is difficult to compare different noise suppression methods since 
so much depends on implementation and parameter selection, but 
generally speaking eigen filtering appears milder than f-xy 
prediction filtering for a given amount of signal preservation. Its 
fast speed and excellent behaviour at the grid boundaries, 
however, may make it the preferred choice for certain situations.  

For very strong noise suppression, eigen filtering can be applied 
after f-xy prediction or projection filtering (the other way around is 
not as successful). One reason these might work well together is 
that they use completely different noise-suppression mechanisms 
– that is, separation versus prediction. The extra cost over fx-
prediction alone is minor since eigen filtering is much faster.  

Concerning future work, the speed of eigen filtering, combined 
with its ability to absorb x- and y-consistent multipliers, suggests it 
may be useful for noise suppression of prestack 2-D data prior to 
deconvolution or statics. Eigenimage decomposition can also be 
used for data compression (Andrews and Patterson, 1976.) If a 
stacked 3-D volume has had eigen noise suppression performed, 
eigen compression in the f-xy domain can be nearly lossless due 
to the projection property. 
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Figure 5: Real data example along an in-line slice comparing eigenimage filtering with k = 2, and f-xy prediction filtering with a 5x5 operator. There is little to 
choose between them using these parameters. Neither has remove much coherent signal. 


