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ABSTRACT 
Wavefield extrapolation for a laterally varying velocity model can be achieved by 
applying a nonstationary phase-shift filter to an adaptive, nonuniform Gabor 
transform over the lateral coordinate. A family of adaptive Gabor frames can be 
constructed from a molecular decomposition of unity, each molecule of the latter 
being built by conjoining neighbouring atoms from a uniform partition of unity - 
consisting of translates of a single atom along the lateral coordinate - according 
to a local stationarity criterion derived from the velocity model. 
 
The resulting extrapolation algorithm - called AGPS (adaptive Gabor phase-shift) 
- has a computational cost that is proportional to the complexity of the velocity 
model, while its accuracy is comparable to both NSPS (nonstationary phase-
shift) and generalized PSPI (phase-shift plus interpolation). AGPS includes 
NSPS and PSPI as complementary limiting cases, yet the cost of AGPS ranges 
from an order of magnitude less to about the same order.  
 
The NSPS and PSPI filters differ to the extent that the functional dependence of 
the velocity is either on the input coordinates (NSPS) or the output coordinates 
(PSPI) – in fact, they are spatial transposes of each other. This is why both 
methods are approximate: indeed, any accurate phase-shift operator in a v(x) 
medium must allow for velocity variations along the trajectory of a ray. AGPS 
attempts to address this problem by representing the input and output wavefields 
as superpositions of windowed components, each of which is approximately 
stationary with respect to the velocity. 
 
Introduction 
 
This paper has a predominantly qualitative scope. Consequently, an investigation 
into the underlying mathematical and theoretical background for the new AGPS 
algorithm has been reserved for a companion paper (Grossman et al., 2002). For 
a derivation of the new and exact wavefield extrapolator – used here to forward 
model the propagation of an impulsive wavefield – see Margrave, et al., (2002). 
Apart from its remarkable accuracy, a distinguishing feature of Margrave’s 
extrapolator is its transitivity through any v(x) medium. By transitivity, we mean 
that a single depth step yields the same result as the iteration of any number of 



intermediate steps does. We use this algorithm as a benchmark to test the 
performance of three approximate wavefield extrapolation methods: the NSPS 
and generalized PSPI methods of Margrave and Ferguson, (1999) and AGPS. 
 
The AGPS algorithm includes NSPS and PSPI as complementary limiting cases. 
Each of these methods applies a velocity-dependent, nonstationary phase-shift 
filter over each temporal frequency slice of the input data. The two latter filters 
differ to the extent that the functional dependence of the velocity is either on the 
input coordinates (NSPS) or the output coordinates (PSPI) – in fact, they are 
spatial transposes of each other. This is the key reason why both methods are 
approximate: indeed, any accurate phase-shift operator in a v(x) medium has to 
account for the fact that the velocity can vary along the trajectory of a ray. AGPS 
attempts to address this problem by representing the input and the output 
wavefields as a superposition of windowed components, each of which is 
approximately stationary with respect to the velocity. 
 
We begin with an overview of the AGPS algorithm, and refer the reader to 
Grossman, et al. (this volume) for the mathematical details. We then provide a 
performance analysis for the AGPS, PSPI, and NSPS extrapolators, based on 
forward-modelled data generated by Margrave’s exact extrapolator. 

 
Overview of the AGPS method 
 
AGPS propagates a wavefield from a depth level  to a depth level  by 
applying nonstationary phase-shift filters to an adaptive spatial Gabor transform 
of the input data. Given a velocity model, v(x), the first step is to choose a 
suitable window, or atom. The choice of atom is in itself a current topic of 
research, (e.g., Feichtinger and Strohmer, 1998, or Grochenig, 2001) but we 
recommend using a Gaussian or Gaussian-like window, with a halfwidth that is at 
least large enough to ensure that its sampled version faithfully represents it. This 
atom is then translated along the discrete x-coordinate, one atom centered at 
each sample point. The resulting suite of windows is rescaled, if necessary, to 
ensure that its superposition equals one: thus, the translated atoms form a 
maximal, uniform partition of unity (POU).  
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Next, this maximal POU is adapted to yield a nonuniform partition of unity, in 
such a way that the essential nonstationarity of the velocity function is respected. 
This procedure involves the formation of molecules, or macro-windows, by 
summing neighbouring atoms over regions that meet a local stationarity 
measure. The stationarity measure in the current context is simply an acceptable 
threshold against which the deviation of the velocity from its mean over the 
current molecule is compared. Thus, if this deviation is less than the threshold, 
the current atom is conjoined to the current molecule. Each molecule gathers 
atoms until it encounters a large enough velocity anomaly. The result is an 
adaptive partition of unity, or molecular decomposition. 
 



In our numerical implementation of the AGPS algorithm, the molecules are 
defined as follows. Let 0λ ≥  be a constant, called a threshold, and let the current 
state of the  molecule be denoted by thn N

nM , where is the current number of 
atoms it contains. If 
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where . Next, define the mean of the velocity over the current 
molecule by 
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The stationarity condition with respect to the given threshold λ  goes as follows: 
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Such a molecular decomposition is shown in Figure 1. The illustrated velocity 
model is representative of all types of variations, ranging from a simple constant 
to an everywhere discontinuous random function. Note how the atoms cluster 
near the larger local variations in the velocity. Everywhere else, the atoms ‘bond’ 
to form molecules; and their size varies inversely with the magnitude of the local 
variation of v. Note also that the molecules sum to unity, as desired. 
 
The next step is to use this molecular decomposition to construct a one-
parameter family of analysis and synthesis frames for the Gabor transform, 
indexed by [ ]0,1p∈ . For each fixed p, the analysis windows are defined by 
raising each molecule to the power p. The corresponding dual frame, consisting 
of synthesis windows, is defined by raising each molecule in the decomposition 
to the complementary power, 1 p− . 
 
For example, if the fundamental atom is supported on a finite interval, and 1p = , 
then the molecular decomposition itself forms the analysis frame, and the 
synthesis windows are boxcars. For 0p = , these roles are reversed. However, if 
the atom is supported on the whole of R, (e.g., a Gaussian) then no synthesis 
(analysis) windows are used if 1p =  ( 0p = ). In either case, the analysis and 
synthesis frames are identical for 1/ 2p = . 
 



The analysis and synthesis frames, constructed in this way, ensure an overall 
energy and amplitude preserving transformation to the Gabor domain and 
back(see Grossman et al., 2002). Moreover, with respect to the choice of atom 
and stationarity measure, the redundancy of the Gabor transform is minimized; 
hence so is its computation time. 

 
Fig. 1. A demonstration of how the Gabor algorithm achieves an adaptive 
partition of unity frame (magenta) from a maximal partition of unity, (not shown) 
which reflects the local nonstationarity of a velocity model. The piecewise-defined 
velocity model (blue) is representative of all types of velocity variation: constant, 
random, a jump discontinuity between two constants, and a jump from smooth to 
constant. The smoothed velocity (dashed green), obtained by convolving the 
velocity model with a fundamental atom, (any of the smallest magenta windows) 
acts as a visual aid in comparing the molecules (magenta) to the local velocity 
variations. 

Each frequency slice of the input data, ( )0, ,x z zψ ω =  is then Gabor transformed, 
( ( ), xx x k→ % ), phase-shifted by ei zφ∆ , where 

 
( )

2
2

2( , , )x xx k
v x
ωφ ω k= −

  
%

%
, (4) 

then inverse Gabor transformed. The result is an estimate of the wavefield, 
( )0, ,x z z zψ ω = + ∆ , at depth 0z z+ ∆  and frequency ω . After repeating this process 

for each ω , an inverse Fourier transform over ω  gives the desired estimate in 
space-time coordinates. 

The velocity function ( )v x%  in the dispersion relation (4) is defined, for each x% , as 
the mean of the velocity over the molecule centered at x% . It thus assigns a 
constant velocity to each molecule in the Gabor decomposition. A key feature 
that controls the accuracy of the algorithm is the choice of stationarity measure: a 
large threshold can lead to large molecules; hence, a more coarsely sampled 
velocity. On the other hand, too strict a measure could lead to higher cost than 
necessary for the desired accuracy. 



Roughly speaking, the balance between the dependence on the input and the 
output coordinates can be shifted by adjusting the parameter p in [0,1]. However, 
the situation is more complicated than this, and has yet to be fully understood. In 
the limit as the window size shrinks to zero, the cases 1p =  and  reduce to 
NSPS and PSPI, respectively. It turns out that for the examples below, which use 
compactly supported windows, the best choice is 

0p =

1p = . Intuitively, we might 
expect  to be optimal, since this implies a symmetric dependence on the 
input and output coordinates. Experiment suggests that the optimal value of p 
depends on the choice of window, but this remains an open question. 

1/ 2p =

 
Examples 
 
Margrave’s exact one-way extrapolation algorithm was used as a forward model 
to upward propagate an impulsive wavefield through a laterally varying velocity 
field. This impulse response was then inverted, by reverse-extrapolation, using 
the Exact, NSPS, PSPI, and AGPS extrapolators. The relative costs for two 
extreme cases appear in Table 1. The first is a step between two constant 
velocities, (Fig. 2(a)) and the second involves a velocity function that varies 
randomly at each offset (Fig. 2(b)). In the first case, AGPS outperforms NSPS 
and PSPI by a factor of six, while all three have similar costs in the second case. 
The extra cost for the exact algorithm in the random case is small, so its use in 
complex media may be justified. 

Table 1. Comparison of computation times for various extrapolation algorithms. 
In contrast to the first three methods, the cost of AGPS is proportional to the 
complexity of the velocity model. The cost of AGPS spans an order of magnitude 
between the two extremes, namely, the velocity models depicted in Figures 2 
and 3. 

Extrapolation algorithm Absolute cost for step/random Relative cost for step/random 

Exact 47.067/46.317 100/100 
NSPS - 1 step 3.946/3.675 8.2/7.9 
NSPS - 5 steps 20.580/17.545 42.5/37.9 
PSPI - 1 step 3.995/3.746 8.2/8.1 
PSPI - 5 steps 20.365/19.217 41.9/41.5 
AGPS - 1 step 0.601/3.916 1.2/8.5 
AGPS - 5 steps 3.245/19.438 6.4/42.0 

Fig. 2 shows the velocity models used in our examples, and the corresponding 
molecular decompositions of unity. Both decompositions are used as analysis 
frames (so ) for the nonuniform Gabor transform. The fundamental atoms 
(black) are Lamoureux windows of order two, (twice differentiable polynomial 
splines) sampled at 7 points, and the spacing between atoms is 10m. 

1p =



  (a) (b)

Fig. 2. (a) Molecular decomposition (blue) for a step velocity (magenta), 
constructed from the fundamental Gabor atom shown in black. The velocity 
jumps from 2250 m/s to 3750 m/s. (b) Molecular decomposition (blue) for a 
random velocity (magenta), built from the Gabor atom shown in black. The 
velocity fluctuates randomly between 1500 m/s and 2500 m/s. 
The input wavefield for both examples, shown in Fig. 3(a), consists of eight 
bandlimited impulses. Figs 3(b) and 3(c) show the exact upward extrapolations of 
the input wavefield by 200m, using the velocity models of Figs 2(a) and 2(b), 
respectively. Fig.4 shows the results of reverse extrapolating the last two fields 
with the exact operator. These last two results will serve as benchmarks for 
comparing the quality of the remaining methods. Aside from some minor 
numerical artefacts, these images are the best one can hope to obtain (see 
Margrave et al., 2002). 

  (a) (b) (c) 

Fig. 3. (a) Input wavefield for two upward extrapolations by 200m, using the exact 
extrapolator; (b) and (c) show the resulting wavefields, using the velocity models 
of Figs 2(a) and (b), respectively. 

  



  (a) (b) 

Fig. 4. Inversion of the two wavefields of Figures 3(a) and 3(b): (a) using the 
velocity model of Figure 2(a), and (b) using the velocity model of Figure 2(b). 

Fig. 5 displays the various results of inverse extrapolating the wavefield of 
Fig. 3(b) - using the step velocity model of Fig. 2(a) - which should be compared 
to Fig. 4(a). The corresponding computation times are listed in Table 1. The rows 
contain pairs of results for PSPI, NSPS, and AGPS, respectively; the first column 
is for a single depth step of 200m, and the second is for five steps of 40m. The 
last row also shows the corresponding molecular decomposition for the AGPS 
case. 

PSPI gives a reasonable result in both cases, but it introduces an artificial 
discontinuity in the wavefield at the interface between the two constant velocity 
blocks. It is well known that PSPI produces this artefact for large depth steps. 
The results for NSPS are better, particularly since the fifth impulse is more 
focused. AGPS yields essentially the same result as NSPS, but shows marginally 
fewer artefacts in the case of five steps. This makes NSPS a bargain – at least 
for simple velocity models.  

Fig. 6 displays the results, in exactly the same format as for Fig. 5, using the 
input wavefield of Fig. 3(c) and random velocity model of Fig. 2(b). These should 
be compared to Fig. 4(b). The corresponding computation times are listed in 
Table 1. 

The PSPI and NSPS results 6(a) and (c) are remarkably different. PSPI again 
introduces discontinuities in the wavefield at every discontinuity in the velocity – 
hence the randomly scattered appearance of the extrapolation. The result (c) for 
NSPS shows “migration smiles” that arise due to the use of incorrect velocities. 
Increasing the number of steps, as in (b) and (d), helps to cure both of these 
issues. Again, AGPS yields very similar results as NSPS in both cases, although 
AGPS is slightly better focused, and contains fewer artefacts. Since they use 
approximate velocities, all three methods tend to misplace the wavefield in time. 
This effect is most easily observed near discontinuities in the velocity function.   



Summary 
 
We showed that AGPS propagates a wavefield from a depth level z to a depth 
level  by applying nonstationary phase-shift filters to an adaptive spatial 
Gabor transform of the input data. A family of adaptive Gabor frames was 
constructed from a molecular decomposition of unity. Each molecule of the latter 
was built by conjoining neighbouring atoms from a uniform partition of unity - 
consisting of translates of a single atom along the lateral coordinate - according 
to a stationarity criterion derived from the velocity model. Each molecule in the 
resulting Gabor frame was assigned a mean velocity, and then the phase-shift 
operator was applied, using these velocities, in the nonuniform Gabor domain. 
This process was repeated for each temporal frequency slice, and the desired 
extrapolation was represented in the space-time domain by applying an inverse 
Gabor transform, followed by an inverse Fourier transform over frequency. 

z + ∆z

The cost of AGPS is proportional to both the complexity of the velocity model and 
the desired degree of accuracy. Its accuracy is comparable to that of NSPS and 
PSPI, but its cost is much lower, especially for simple velocity models. For 
random media, the cost of Margrave’s exact algorithm is only marginally greater 
than the latter three, so its superior quality warrants its use. 

Future work 
 
Each of the approximate wavefield extrapolators suffers from a misplacement of 
the wavefield in time, hence also in depth, especially near vertical discontinuities 
in the velocity field. However, this can likely be healed somewhat by using a 
processing technique similar to that used by Stoffa et al., (1990). We first rewrite 
the phase-shift, zφ∆  (see expression (1)) as the sum of a focusing term, f zϕ ∆ , 
and a shifting term, s zϕ ∆ , where  
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The shifting term is independent of , so it does not vary with propagation 
direction. Physically, it is responsible for a vertical depth shift of the data, while 
the focusing term serves as an angle-dependent correction.  The idea is to 
precondition the data by applying the phase-shift operator  

xk

 sie zϕ ∆  (6)  

in the ( ,x )ω  domain, before implementing the focusing phase-shift filter in the 
Gabor domain. The second step amounts to replacing expression (1) with  

 fie ϕ z∆  (7) 

in the AGPS algorithm. 
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FIG. 5. Results of inverse extrapolating the wavefield of Figure 3(b), using the step velocity model of Figure 
2(a). The corresponding computation times are listed in Table 1. The rows contain pairs of results for PSPI, 
NSPS, and AGPS, respectively; the first column is for a single depth step of 200m, and the second is for five 
steps of 40m. The last row also shows the corresponding molecular decomposition (black) for the AGPS 
case. Compare these to Figure 4(a). 
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FIG. 6. Results of inverse extrapolating the wavefield of Figure 3(c), using the step velocity model of Figure 
2(b). The corresponding computation times are listed in Table 1. The rows contain pairs of results for PSPI, 
NSPS, and AGPS, respectively; the first column is for a single depth step of 200m, and the second is for five 
steps of 40m. The last row also shows the corresponding molecular decomposition (black) for the AGPS 
case. Compare these to Figure 4(b). 
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