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ABSTRACT 
3-D prestack depth migration is becoming a routine process in seismic data 
processing, hence the requirement for accurate velocity model building. For 
building an initial 3-D velocity model, the traditional Deregowski loop is often 
used. Based upon the assumptions of straight-ray and small-offset/depth 
ratio, it converts depth residual errors into time residuals and then applies 
traditional NMO velocity analysis. The interval velocities are then obtained by 
a layer-stripping process with the Dix formula. Since this process is based on 
the assumptions of small-offset/depth ratio and straight-rays, the results are 
often unsatisfactory, from both theoretical and practical standpoints. One 
notable shortcoming is the error accumulation in depth intrinsic to this 
process. 

 
In this abstract, we propose a 1-D tomographic residual curvature analysis 
method. It applies ray tracing to recover the specular ray paths, therefore 
accommodating the ray-bending effect. Compared with the traditional 
Deregowski loop, this method completely eliminates the assumptions of 
straight-ray and small-offset/depth ratio. The interval velocities are obtained 
by globally solving a linear system of equations. Therefore, it partially solves 
the problem of error accumulation intrinsic to the layer–stripping process with 
the Deregowski loop and the Dix formula. Analyzing 1-D tomography in 
simple medium helps us to understand the behavior of more general 3-D 
tomographic residual analysis methods. It can also provide a more accurate 
initial velocity model or low-frequency velocity model for subsequent 3-D 
global tomography. We present algorithms for updating velocity for constant-
gradient as well as blocky models. Numerical results will also be presented 
for discussion. 
 
Introduction 
 
3-D prestack depth migration positions reflected seismic events at their correct 
subsurface locations. Accurate knowledge of seismic interval velocities is 
essential for converting surface prestack reflection data into images of 
subsurface structures. Analysis of depth-migrated gathers, (e.g. common image 



gathers, or CIGs), is the basis of most current interval velocity estimation 
techniques. These gathers should consist of flat events when the velocity used 
for the migration is correct. Inaccurate velocities will result in the residual 
moveouts in such gathers. So, the goal of interval velocity analysis is to flatten 
events in the gathers.  The flattening of residual curvature by adjusting seismic 
velocities allows depth migration to be used as a powerful tool for velocity 
analysis. 
 
Although 3-D full-scale tomography has been available in some oil companies, 
there are still some unknown mechanisms in the inversion process. Analyzing 1-
D tomography in simple medium helps us to understand the behavior of more 
general 3-D tomographic residual analysis methods. It can also provide a more 
accurate initial velocity model or low-frequency velocity model for subsequent 3-
D global tomography. 
 
Traditional Deregowski loop [1] is often used for building initial velocity model. 
However, it is based upon the assumptions of straight-ray and small-offset/depth 
ratio. The interval velocities are obtained by layer-stripping process with the Dix 
formula, which may introduce accumulation errors during the solving process. In 
order to solve these problems in Deregowski loop, we propose a 1-D 
tomographic residual curvature analysis method. It applies ray tracing to recover 
the specular ray paths, therefore accommodating the ray-bending effect and 
completely eliminates the assumptions of straight-ray and small-offset/depth 
ratio. The interval velocities are obtained by globally solving a linear system of 
equations. This partially solves the problem of error accumulation intrinsic to the 
layer stripping process with the Dix formula. 
 
Tomography, no matter whether it is 1D or 3D, relies heavily on raypaths traced 
through the initial velocity model. In general, this requires the knowledge of 
reference depth reflectors or time events. These locations are either guessed or 
estimated somehow (e.g. by picking events on the stacked image) before the 
tomography begins. In residual curvature analysis, specular raypaths from these 
reflector locations and the velocities the rays pass through provide all the 
information needed to build linear system of equations that convert the depth or 
time errors to velocity perturbations. 
 
Depending on how the equations are built, the approaches can be categorized 
into two types: the floating-reflector method ([2,7,3]) and the fixed-time event 
method (van Trier, 1990; Zhou et al., 2001). Both are based on the principle that 
ray tracing (modeling) undoes migration whether the velocity in migration is 
accurate or not. The specular ray pairs are recovered by tracing a ray pair for a 
given offset from the migrated depth for that offset.  
 
The floating-reflector method assumes that true reflector locations are known and 
they are used as reference reflectors. However, this assumption certainly is not 



true at this tomographic stage, therefore, it has to be removed by some 
operations [2,7,3], resulting in the loss of accuracy. 
 
The fixed-event method goes further than the floating-reflector method in 
correcting the error in reflector location.  Instead of using true reflectors as its 
reference reflectors, this method uses true zero-offset events in the time 
(unmigrated) domain as its reference events. In this abstract, only the fixed-time 
event algorithm will be discussed in detail along with its applications to a 
synthetic example. 
 
The model is assumed as piece-wise linear in this abstract, which is adequate for 
many regions such as the Gulf of Mexico. Numerical results will also be 
presented for discussion. 
 
Algorithm 
 
After transforming from time to depth by a 3-D prestack depth migration, a CIG is 
collected at a specific surface location. Each trace in the CIG represents the 
result of depth-migration. Given the picked image locations and their 
corresponding offsets, the linear system of tomographic equations are built with 
the following procedures: 
 

1. Shooting the rays up from image location z  to find the corresponding 
specular ray pairs associated with this location and the given offset. 

2. Calculate the derivatives of traveltime with respect to the velocity in each 
layer. 

3. Build the linear system of equations with each row related to its 
corresponding specular ray pairs using the fixed-time event algorithm 
discussed below. 

4. Solve the linear equation using least-squares method to obtain the 
solution of the model (i.e., velocity perturbation). 

5. Obtain the updated image location. 
6. Repeat the above procedure if necessary. 

 
Model description 
Tomographic methods tend to be characterized by the underlying model 
representation.  An accurate and stable solution of the tomographic method can 
only be obtained if the model representation is selected according to the nature 
of the geology. In areas of limited complexity, a simple method can be efficient 
and produce a satisfactory solution, if the problems are defined appropriately. If 
the subsurface velocity is smoothly varying, then the velocity model can often be 
well represented by a smooth model. A typical example of this happens in the 
Gulf of Mexico outside of salt, where the sediment velocity is essentially smooth. 
In view of these aforementioned points, we simply represent velocity as a piece-



wise linear function with velocity defined at each knee-point. And the velocity field 
is parameterized independently of the reflector positions. In other words, the 
velocity field is decoupled from the reflector locations. 
 
Algorithm (Fixed-time Event) 
The fixed-time event method works by tracing normal incident rays from a given 
reflection event for all offsets besides finding their corresponding specular ray 
pairs. As the principle of ray tracing undoing migration implies, the true 
traveltimes can be recovered even though the true reflector locations remain 
unknown. In other words, even though the migration was performed with an 
incorrect velocity, the traveltime along the normal incidence ray from a migrated 
event on the zero-offset section is still one-half the correct zero-offset time for 
that event. However, if we shoot normal incident rays from corresponding 
imaging location in other nonzero-offset sections, the zero-offset time will not be 
the same if the velocity is incorrect. This difference can be used to invert for 
velocity perturbations.  Doing this allows the back-projection operator to be more 
accurate than the floating-reflector method. 
 
Let's suppose t  represents the two-way traveltime for half-offset  at location 

. Then according to the demigration principle, t  is theoretically accurate [8] 

even when the migration velocity is wrong. Now let t  represents the modeled 
two-way traveltime at location . In principle, if the migration velocity is not the 
exact velocity, . Therefore, the deviation between t  and  can be used 
to get the velocity information.  The algorithm can be obtained by applying Taylor 
expansions 

0h

ht 0

0h

h
h0

0h
z

0h
h
h0

hz
h
ht 0

≠
0h

t

 

 ∑
=

∆
∂
∂

+∆
∂
∂

+=
n

i

h
h

i
i

h
hh

hh z
z
t

v
v
t

tt
1

00

00
. (1) 

 
Here, indices i  represents the velocity values the specular ray pairs 
pass. And 
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Substituting equation (2) into equation (1) yields the following velocity updating 
equation 
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To look carefully at the equation (3), we find that derivative information for 
i

h

v
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has to be given to make a linear system of equations. According to zero-time 
imaging principle [6], 
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Here, hθ  is the half-opening angle of the specular ray corresponding to the given 
half-offset h [3,8], and  is the velocity at the current imaging location. Except 
for the traveltime derivatives with respect to the velocities that will be discussed 
in the following section, it's clear that we already get all the information to build a 
linear system of equations. 
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Traveltimes and Traveltime derivatives 
According to Snell's law, the ray parameter p will be constant and satisfy 
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where 0α  and  are the emergent angle and velocity at the top of the layer, 
respectively. And 

0v

1α  and  are the incidence angle and velocity at the bottom of 
the layer. 
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In each layer, given the ray parameter p , which happens to be constant 
throughout the ray tracing, we have the following analytical results [4] and (Dr. Yu 
Zhang, private communication): 
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Here, specular ray pairs are assumed to travel from subsurface upward to the top 
of the layer and ( ) ( )00 zzvvk −−=  is the velocity gradient, having the unit of 
inverse time. 
 
Therefore, the total traveltime and horizontal distance the ray travels can be 
represented as the summation of x  and t  in each layer is described as: 
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where  is the traveltimes for the ray in each layer with t  at the surface layer 
and t  at the bottom layer. 
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Therefore, the traveltime derivative with respect to velocity at each knee-point 
can be denoted by 
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In this case, we assume that the first layer is a constant-velocity medium (which 
may correspond to the water layer). This leads to equation (10). 
 
In case when the velocity gradient is small ( )1<<ik , the traveltime derivatives 
can be represented as 
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Numerical examples 
 
In this section, a 1-D example of tomographic velocity analysis has been tested. 
Since the reflectors are decoupled from velocity grids, we test the algorithm using 
both five-reflectors and nine-reflectors models. To simulate real case of the 
tomography, the curvatures of the imaging locations are picked manually instead 
of computed analytically. The true velocity model and initial velocity model are 
shown in Table 1. In this table, the columns 4 and 5 are the updated velocities for 
the nine-layer reflectors after 1st and 4th iterations, respectively. And columns 6 
and 7 are the updated velocities for the five-layer reflectors after 1st and 4th 
iterations, respectively. The velocities updated from both five-layer reflectors 
model and nine-reflectors model show similar results. Fig. 1 shows the residual 
curvatures (Fig. 1a) and semblance plot (Fig. 1b) of nine-reflectors model before 
tomographic updating and the corresponding results after tomographic updating 
(Fig. 1c and Fig. 1d). It’s obvious that the tomographic algorithm discussed in this 
abstract indeed flattens the CIG gathers and recovers the true locations of 
reflectors. 



    
 (a) (b) (c) (d) 

Fig. 1. Common image gathers and semblance plots. 
 

Using nine-layer reflectors Using five-layer reflectors 
Depth True velocity Initial velocity Velocity after 1st

iteration 
Velocity after 4th

iteration 
Velocity after 

1st iteration 
Velocity after 
4th iteration 

400 1700 1500 1677.88 1688.64 1678.04 1680.77 
800 2500 2200 2415.00 2453.06 2421.73 2490.31 

1200 2000 1800 1958.02 1974.89 1995.30 2032.59 
1600 2500 2200 2259.51 2491.51 2290.08 2509.47 
2000 3000 2700 2700.59 2735.92 2701.21 2728.44 

Table 1: Results of tomographic curvature analysis. 
 
Conclusions 
 
In this paper, we discussed a type of 1D tomography that updates the velocity 
model using the residual curvature in common image gathers. Linear system of 
tomographic equations are built and solved to obtain velocity perturbations. A 
numerical example is provided to show the effectiveness of the method. 
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