Basement-involved inversion at the Appalachian structural front, Western Newfoundland: Interpretation of seismic reflection data and implications for petroleum prospectivity

Glen S. Stockmal* Natural Resources Canada, Geological Survey of Canada (Calgary) 3303 33rd Street NW, Calgary, AB, T2L 2A7 gstockma@nrcan.gc.ca

Art Slingsby Piper Energy Inc., 1000 520 5th Avenue SW, Calgary, AB, T2P 3R7

and

John W.F. Waldron Department of Earth and Atmospheric Sciences University of Alberta, Edmonton, AB, T6G 2E3

ABSTRACT

Recent exploration in Western Newfoundland has resulted in six new wells in the Port au Port Peninsula area. Port au Port No.1, drilled in 1994/95, penetrated the Cambro-Ordovician platform and underlying Grenville basement in the hanging wall of the SE-dipping Round Head Thrust (RHT), terminated in the platform succession in the footwall of this inverted basement-involved structure and discovered the Garden Hill pool. The most recent well, Shoal Point K-39, was drilled in 1999 to test a model in which the RHT loses reverse displacement to the NE, eventually becoming a normal fault. This model hinged on interpretation of a seismic reflection survey in Port au Port Bay, now in the public domain.

In our interpretation of these data, the RHT is antithetic to another basementinvolved feature, the NW-dipping Piccadilly Head Fault (PHF). Initiated as normal faults in the Taconian foreland, both these faults were later inverted during Acadian orogenesis. The present *reverse* offset on the PHF was previously interpreted as the SE-dipping RHT with a normal motion sense. Our interpretation is consistent with mapping on Port au Port Peninsula and north of Stephenville, where all basement-involved faults are inverted and display a reverse sense of motion. It also explains enigmatic reflections as the conglomeratic Cape Cormorant Formation, a unit associated with inverted thickskinned faults. The K-39 well, which targeted the *footwall* of the RHT, actually penetrated the *hanging wall* of the PHF. The apparent magnitude of structural inversion across the PHF suggests other plays to the east of K-39.