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ABSTRACT 
Depth velocity models are an essential part of seismic data processing and 
interpretation. They are used in time-to-depth migration and transformation, and 
AVO analysis. The overburden velocity anomalies essentially influence stacking 
velocities and, therefore, may result in big errors in the velocity model 
determination.  
 

Determination of interval velocities is often performed under the assumption that 
Dix’s formula gives us reasonable values. This formula has been derived for a 
medium with horizontal homogeneous layers. If there are strong lateral changes 
in the interval velocities in the shallow part of the section or in the estimated 
layer, Dix’s formula can cause large errors in the velocity model. There are 
several approaches for developing a Dix’s type inversion (Chernjak and 
Gritsenko, 1979, Hubral and Krey, 1980, Goldin, 1986) for the medium with 
curvilinear boundaries. They realize layerwise determination of interval velocities 
and assume locally homogeneous layers. It means that the interval velocity does 
not change around the zero-offset ray. As analytically shown by one of the 
authors (Blias 1981, 1987, 1988, 2002), not taking into account lateral velocity 
changes may lead to significant errors in interval velocities. 
 
There is another problem with layer-by-layer interval velocity calculation. A small 
error in the first layer causes a bigger error for the second layer. These two 
errors, in their turn, cause much bigger error in the third layer and so on. If we 
have more than three layers, this process may result in very large errors for the 
deep layers. The reason for these errors lies in the connection between stacking 
velocities for deep horizons and second derivatives of the shallow interval 
velocities (Blias, 1981, 1988). It implies that small errors in the second 
derivatives of interval velocities may lead to big estimation errors for deep layers.   
 
These two problems show that for complicated geology (velocity anomalies) 
other methods should be developed.  

 
 
 
Introduction 
 
There are different ways to solve this problem. One approach would be to use 
the normal incident raytracing and Dix-type formula (T. Krey and P. Hubral, S. 
Goldin, Chernjak and Gritsenko). This approach uses a layer-stripping inversion 
and often leads to big errors in the deep layers. The reason of these errors lies in 



the connection between stacking velocities for deep horizons and second 
derivatives of the shallow interval velocities (Blias, 1981). These inversion 
methods consider local-homogeneous layers; that is, they assume that the 
interval velocity does not change along the ray. The problem is that, for deep 
reflectors, moveout function is generated by a wide interval in the shallow layers 
(Fig.1). 

 
To obtain an accurate value of stacking 
velocities for deep reflectors, we have to 
use long-spread moveout functions. Interval 
velocity for the downgoing part of the 
moveout ray (AB) may differ from the one 
for upgoing ray (CD). As shown by one of 
the authors (Blias, 1987, 1988, 2002), the 
second derivatives of the shallow interval 
velocities cause big changes in stacking 
velocities.  
 
Another reason for systematic errors in the 

interval velocity estimations is the change of stacking velocities with the 
spreadlength caused by non-hyperbolic moveout function. 
 
To reduce these errors, iterative algorithms are used (Goldin, 1986). It decreases 
the errors, mostly caused by non-hyperbolic moveout, but does not allow 
minimizing the errors caused by shallow velocity anomalies. As shown by one of 
the authors (Blias, 1987, 1988), small errors in shallow velocities (and 
boundaries) estimations may cause big errors for deep interval velocities. The 
reason for this is that we need to determine not only the shallow interval 
velocities themselves, but also their second lateral derivatives. In the case of 
lateral shallow velocity variations, the second derivatives of interval velocities and 
curvilinear boundaries have a big influence on stacking velocities from deep 
reflectors. It implies that small errors in the second derivatives of interval 
velocities may lead to big estimation errors for deep layers. 
 

To solve this problem, we developed an optimization approach. Optimization 
methods in traveltime inversion for the layered medium have been considered by 
S. Goldin, A. Glebov and realized into 2D traveltime inversion software (Goldin, 
1986, Glebov, 1988). This approach allows determination of the interval 
velocities and reflection boundaries using the results of the velocity analysis. This 
approach needs an initial model, which can be obtained using a layer stripping 
inversion method. To improve interval velocities and boundaries, we describe 
them as a linear combination of basic functions with unknown coefficients. To 
find these coefficients, we minimize an objective function – squared deviation 
between model and real time arrivals. The Newton method is used to find this 
minimum with analytical derivative calculations. This approach allows us to 
obtain reliable interval velocities and to build a velocity-depth model. It also 



allows us to find the shallow velocity model using some a priori information about 
deep interval velocities.  
 

This approach can be used to map lateral velocity changes of the permafrost. 
Seismic velocities of the permafrost may vary between 1900 and 4200 m/sec 
(Calvert et al., 2001). These lateral changes cause large oscillations in stacking 
velocities from deep reflectors. Using additional velocity information, obtained 
from the log data, the travel-time inversion algorithm gives us tools to separate 
shallow and deep lateral velocity changes. 
 
Shallow velocity anomalies and their influence on stacking velocities 

 

Before considering traveltime inversion, let 
us put some remarks concerning velocity 
anomalies and their influence on the depth 
conversion. Let us consider the velocity 
model shown on Fig.3a (interval velocities) 
and 3b(boundaries). Geometry is the same 
for all considered models: group interval 
and shot distance are 40 m, each common 
shot gather contains 60 receivers and the 
smallest offset is 40m. As shown by the 
author (Blias, 1981, 1987, 1988), for deep 
reflector, stacking velocity repeats the 
behavior the second-order derivative of the 
shallow velocity v1(x). This is very well s
on the Fig. 2c, where the behavior of 
stacking velocities is very close to that (
some scalars depending on the reflect
depth) of the second-order derivative
interval velocity in the first layer (Fig.3a). 
The same quality holds for the curvilinear 
boundary (Blias, 2002). From this point 
view, we can completely understand the 
behavior of the stacking velocity when 
there is an overburden velocity anoma
Armstrong at el. 2001, Fig.2).  
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second-order derivative of the curvilinear shallow boundary. This fact explains
why we should not expect that stacking velocity repeats in any way average, or 
RMS, velocity behavior, when we have strong non-linear lateral velocity change
(interval velocities or curvilinear boundaries) in the shallow part of the sec
We may mention here, that the anomaly behavior of the stacking velocity is not 
caused by non-hyperbolic moveout, as it was stated in the same paper, 
confirm this, we calculated standard (---) and maximum (---) deviations between



NMO function and its hyperbolic 
approximation for the NMO interval 
2500m. Fig.4 shows these deviations for 
the two deepest boundaries. Th
standard deviation is less than 2 ms an
maximum deviation for the most NMO 
function does not exceed 3 ms even 
the close-to depth offset interval. 
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   (1) 

Here ϕ k (x,y) are the basic functions, αm,k, βm,k are the unknown coefficients for 

n 

  T(R,S,M) = Σ tk(Qk-1,Qk,M)    (2) 
 

It
anomaly is not caused by non-
hyperbolic moveout, but by the 
order derivatives of shallow velocity 

Velocity m
 

et’s consider a layered velocL
changing interval velocities. We assume, that we obtained an approximate 
velocity model using seismic and log data. The problem of finding the 
approximate values for layered velocities and boundaries is considered
the authors (Blias, E., Stacking and Interval Velocities in a Medium with Laterally 
Inhomogeneous Layers, CSEG, 2003). The simplest way to obtain the reference 
model is to apply a strong smoothing of the stacking velocities, which makes 
them almost constant and then using Dix’s formulas. This allows us to obtain 
approximate average interval velocities, though we miss the real lateral chang
The aim of the optimization approach is to improve the reference model, to 
recover lateral interval velocity changes and to map reflectors in a proper wa
 

boundaries as the sum of some reference We describe interval velocities and 
(known) functions and linear combinations of basic functions ϕ k (x,y) with the 
coefficients α and β: 
 

s (x,y) = v
         k 

        
    F(x,y) =  Hk(x,y) + Σ βm,kϕ k (x,y), 

       k 

the m-th layer; pm(x,y) and Hk(x,y) are the slowness and boundaries for the zero 
approximation of depth velocity model (reference model). Let S(x1,y1,z1) and 
R(x2,y2,z2) be the source and receiver and Qk(ξk,ηk,Fk(ξk,ηk)) be the intersectio
point along the ray, Fig. 4.  
 
 

k 



Here tk(Qk-1,Qk) gives the time between the 
points (Qk-1,Qk), M(α,β) – velocity model which 
includes boundaries and velocities (1). 
Assuming that interval velocity does not 
change too much within the ray, we can write 
for the time tk(Qk-1,Qk): 
        1 
   tk(Qk-1,Qk) = dk ∫ sk(xk(t), yk(t))dt  (3) 

                        0 

where dk gives a distance between the points 
Qk-1 and Qk: 

 
dk = [(ξk - ξk-1)2 + (ηk - ηk-1)2 + (Fk(ξk, ηk) – Fk-1(ξk-1, ηk-1))2]1/2 

 

xk(t), yk(t) give the parametric equation (with parameter p, 0 ≤ p ≤ 1) of the ray 
between the points Qk-1 and Qk: 
 

xk(t) = ξk + (ξk - ξk-1) p 
 

yk(t) = ηk + (ξk - ξk-1) p 
 

Traveltime inversion 
 

To apply optimization approach we need a reference depth velocity model – zero 
approximation for our inversion. First we need a reference velocity model. To find 
interval velocities and boundaries, we minimize the objective function  
 

F(α, β) = Σ  [Tk(R,S,M) – tk(S,M)]2    (4) 
     S,R,k 

Here k is the number of reflections that are used; tk(S,M) is the observed time for 
the k-th wave, S and R stand for the source and receiver points. The observed 
times tk(S,M) can be calculated through velocity analysis. 
 

The velocity model M is described by the coefficients α and β from 
representations (1) so we can think of the model M as a vector: 
 

  M = (γ1, γ1,…, γN) 
 

where vector M = (γ1, γ1,…, γN) includes all the coefficients α and β from the 
presentations (1).  
 

Instead of minimizing the objective function F(M), we can find the solution of a 
non-linear system of equations with respect to M: 
 

   ∂F/∂M = 0,  
 

which we can write in the form: 
 

∂F/∂M =  Σ  [Tk(S,R,M) – tk(S,R)] ∂Tk/∂M = 0   (5) 
   S,R,k 

Here ∂Tk/∂M is a vector with the coordinates ∂Tk/∂γi, i=1, 2, …, N. To find the 
solution of the equation (4), we use the Newton method: 



 

Mn+1 = Mn – (∂2F/∂M2)-1Mn,  n=1,2,… 
 

Here n is an iteration number, ∂2F/∂M2 is an N×N matrix A = ||aij|| with the 
elements aij: 
 

aij = Σ ∂Tk/∂γi ∂Tk/∂γj + Σ[Tk – tk]∂2Tk/∂γi∂γj   (6) 
         S,R,k 

 

Matrix A contains the first and the second order traveltime derivatives along the 
rays. To find these derivatives, we use an approach developed by one of the 
authors (Blias, 1985). This approach reduces first-order derivative calculation to 
the differentiation traveltime in one layer. To find the second-order derivatives, 
we have to solve a linear system. To use this method, we need to find an explicit 
formula for the travel time in one layer. If we don’t take into account the 
curvilinear rays, we calculate the layer time through the integral along the straight 
ray, formula (3) (Appendix A). If we want to take into account a curvilinear ray 
within a layer, we can use more complicated formula derived by one of the 
authors (Blias, 1988). Thus, this approach allows us to take into account the 
curvilinear rays. 
 

To stabilize the solution, we use penalty functions. Instead of function (4), we 
minimize the function  
 

F1(α, β) = Σ  [Tk(R,S,M) – tk(S,R)]2 + Σ (umαm,k
2 + wmβm,k

2)  (4) 
     S,R,k           k,m 

 

Here um and wm are the positive weighting factors, m is the layer number. The 
weights factors depend on our knowledge about geology. We can use different 
weights for the velocities and boundaries for each layer. The bigger is the weight, 
the closer is parameter to its initial value. This allows us to make some interval 
velocities and boundaries more stable.  
 

Raytracing is based on approach developed by E. Blias (1985), Blias and 
Lukovkin (1989). This approach reduces the raytracing problem to the solution of 
a non-linear algebraic system of equations with respect to the ray coordinates. 
To solve this system, we use the Newton method. Zero approximation for 
Newton method is obtained with the use or perturbation method.  
 
Model examples 
 
Let us consider two close model examples for the traveltime inversion. The first 
model is composed of laterally inhomogeneous layers divided by curvilinear 
boundaries, Fig.5. The main problem for this model is how to separate lateral 
velocity changes for curvilinear boundaries. Use of Dix’s formula for this case 
gives us the wrong oscillations in interval velocities and, therefore, wrong 
boundary depths. These oscillations are caused by the strong stacking velocity 
oscillations (Fig.7) as a result of shallow velocity anomalies. 



 

 
 

To apply the optimization approach, we need a reference model. We can often 
obtain average values of interval velocities by just calculating them from Dix’s 
formula and averaging them all along the line. We cannot restore velocity 
anomalies and proper depths, but this approach gives interval velocity 
estimations quite close to their average values. Knowing average values of the 

interval velocities, we can, using zero-offset 
times, find the boundaries and thus, obtain a 
reference depth velocity model (--- on Fig.6). 
This model is used as a zero-approximation 
model to be improved through the 
optimization process. 
 
Optimization process allowed us to recover 
variable interval velocities and curvilinear 
boundaries for four iterations. Fig. 6 shows 
the optimization result: blue lines (---) show 
the initial approximation for the boundaries 
(a) and the interval velocities (b); red lines (--
-) show the resultant model after 
optimization and the black lines (almost 
hidden under the red) show model velocities 
and boundaries. 
 
The next model contains a big lateral 
velocity variation (up to 1000m/s) in the first 



layer, Fig.8b. This velocity anomaly can be considered as a permafrost model  
(Calvert et al., 2001). The model also contains lateral interval velocity changes 
and curvilinear boundaries in deep portion of the section. Here we assume that 
we don’t have reflection from the bottom of the first layer, so we have to recover 
this layer (with the others) using deep traveltime.  
 

 
To find the initial velocity model we assume that all the interval velocities, but the 
first one, are constant and all boundaries are horizontal. With these assumptions, 
we found a reference model showed on Fig.9 with the blue lines (---). We see 
that all the structures and interval velocity variations are missing. The shallow 
velocity anomalies, we restored, have big errors. This model was used as a zero-
approximation model for the optimization traveltime inversion. 
 
The result of optimization is shown on Fig.9. Blue lines (---) show initial 
approximation for the boundaries (a) and interval velocities (b); red lines (---) 
show the resultant model after optimization, and the black lines (almost hidden 
under the red) show model velocities and boundaries. We see that even in the 
case where we don’t have a reflection from the bottom of the inhomogeneous 
shallow layer, there is a possibility to recover this velocity anomaly along with the 
depth velocity model. 
 
Conclusions  
 
In this paper, we consider a combination of inverse and optimization approaches 
to build the depth velocity model from seismic data. The goal of the optimization 



is to find depth layered velocity model, which brings the objective function to a 
minimum. To find this minimum, we run an iterative inversion process. In each 
iteration, we linearize the problem, so that it is reduced to a system of linear 
equations. To increase stability, different constraints have been applied. We use 
an optimization approach for the velocity model with laterally inhomogeneous 
layers, taking into account lateral velocity variation around the rays. This 
approach allows us to restore shallow velocity anomalies using traveltime from 
deep horizons. 
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Appendix A. Formula for the time in 3D inhomogeneous layer 
 

Let’s derive a formula for the time between two points Q1(ξ1,η1,z1) and  
Q2(ξ2,η2,z2) in an inhomogeneous layer with the slowness s(x,y,z). We assume 
that lateral changes in interval velocities are relatively small (10% - 15%) with 
respect to their absolute values. It is well known (Lavrentiev et al., 1969) that in 
this medium, we can linearize traveltime with respect to the slowness changes 
and calculate traveltime along the straight ray connecting the source and the 
receiver. 
 

The equation of the line Q1Q2 is 
 

x = x(z) = ξ1 + (z-z1)(ξ2 - ξ1)/(z2-z1) 
z1 ≤ z ≤ z2 (A-1) 

y = y(z) = η1 + (z-z1)(η2 - η1)/(z2-z1) 
 

The time t(Q1,Q2) between the points Q1 and Q2 can be found using the formula: 
 

     z2 
t(Q1,Q2) = ∫√1 + (x′(z) + (y′(z))2 n(x,y,z)dz  (A-2) 

     z1 
 

where x = x(z), y = y(z) are equations for the ray between the points Q1 and Q2. 
From (A-1) we obtain: 
 

x′(z) = (ξ2 - ξ1)/(z2-z1)  
    (A-3) 

y′(z) = (η2 - η1)/(z2-z1) 
 

After substituting (A-1) and (A-3) into (A-2) and changing the variable of 
integration into p: p = (z-z1)/(z2-z1) we obtain the formula 
 
 

t(Q1,Q2) = √(ξ2-ξ1)2 + (η2-η1)2 + [F2(ξ2) – F1(ξ1)]2   × 
   

    1 
× ∫ s(ξ1 + (ξ2 - ξ1)p, η1 + (η2 - η1)p, z1 + (z2 - z1)p)dp  (A-4) 

        0 
 

Let’s consider particular case when the ray is vertical and the points Q1 and Q2 
are on the 2D curves z = F1(x) and z = F2(x) respectively. Then differentiating (A-
4) twice and putting ξ1 = ξ2,η= η2, we obtain: 
 

∂2t/∂ξ1
2 = n/d + 1/3 d ∂2n/∂x2 – n ∂2F1/∂x2 - ∂F1/∂x ∂n/∂x 

 

∂2t/∂ξ1∂ξ2 = -n/d + 1/6 d ∂2n/∂x2 + ½ (∂F2/∂x - ∂F1/∂x) ∂n/∂x (A-5) 
 

∂2t/∂ξ2
2 = n/d + 1/3 d ∂2n/∂x2 + n ∂2F2/∂x2 - ∂F2/∂x ∂n/∂x 

 

These formulas coincide with the formulas, obtained by S. Gritsenko and  
V.  Chernjak (Gritsenko and Chernjak, 2001).  
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