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ABSTRACT 
For small offsets, near-zero-offset stacking velocity can be expressed in terms of 
the second-order moveout derivative. Direct connection between the second-
order moveout derivatives and wavefront curvatures allows us to use either of 
them (see Goldin, 1986, Krey and Hubral, 1980 and references in these books). 
We use the second-order derivatives to study near-zero-offset NMO velocities. 
According to Puzirjov and Goldin (Puzirjov, 1979, Goldin, 1986) we can call this 
stacking velocity “differential” and write it as VNMO. For larger  spreadlength, the 
stacking velocity for the layered medium depends on NMO geometry. We can 
name this velocity ‘integral’ and write it as VSTACK. For hyperbolic moveout, 
differential and integral velocities coincide. For the vertical inhomogeneous 
medium, VNMO coincide with VRMS. We can consider VRMS as VNMO velocity for the 
1D velocity model along the vertical line through the CDP point. 
 
If the medium contains lateral changes in the velocity, they can cause significant 
non-hyperbolic moveout. In this case, difference between differential and integral 
velocity increases and can influence interval velocity estimation.  
 
The purpose of differentiating between integral and differential velocities is that 
from the velocity analysis we calculate integral stacking velocities, but for the 
time inversion (including Dix’s formula), we need differential ones. Usage of 
integral velocities in Dix-type formula leads to systematic errors. This error 
depends on the vertical and lateral velocity changes and on the offset in CDP 
gathers. 
  
To calculate the integral stacking velocity, we have to run raytracing, calculate 
CDP time arrivals for the specific (given) geometry and to approximate the 
obtained time arrival function with the hyperbola T(L):  
 
 

T2(L) = T0
2 + L2/VSTACK

2 

 
Y. Riznichenko called VSTACK effective velocity (Riznichenko, 1946). We 
investigate the difference between the differential and integral stacking velocities 
using both an analytical approach and modeling.  We consider velocity model 



composed of the layers with small-dips curvilinear boundaries and with lateral 
variations of interval velocities. We assume that the lateral changes in the 
interval velocities are relatively small (10% - 15%) with respect to their absolute 
values. It is well known (Lavrentiev et al., 1969) that in this medium, we can 
linearize time with respect to the slowness changes and calculate traveltime 
along the straight ray. As shown in (Blias, 1988), we can also calculate zero-
offset traveltime along the vertical ray because the influence of the small 
boundary dips is the second order with respect to depth changes. 
 
We also analytically consider the behaviour of the stacking velocities in a 
medium with laterally changing interval velocities. W. Lynn and J. Claerbout 
(Lynn and J. Claerbout, 1982) obtained the formula for stacking velocity for the 
one layer model. They also considered the inverse problem using obtained 
second-order differential equation and its numerical solution. Gritsenko and 
Chernjak (2001) used another approach to solve this equation. Blias (1981, 
1987, 1988,) derived a formula for stacking velocities in multilayered medium 
with gently curvilinear boundaries and lateral variable velocities in 2-D and 3-D 
models. Using a perturbation method, he obtained an explicit formula, connecting 
laterally changing interval velocities with differential stacking velocities. This 
formula allows us to analytically estimate the influence of the shallow 
inhomogeneous layers on the stacking velocities from deep horizontal reflectors. 
Here we may mention that, in layered medium, we can see several effects that 
cannot be seen in one-layer velocity model. 
 
Analytical analysis of NMO velocities in medium with laterally 
inhomogeneous layers 
 

Let us consider a velocity model composed of n horizontal laterally 
inhomogeneous layers. For near-zero-offset stacking velocity VNMO (in our 
terminology - differential), we can derive the formula (Blias, 1981, 1987, 1988) 

 n 

         1/VNMO
2 = 1/VRMS

2 (1 + Σ hksk′′bk)    (1) 
k=1 

where  
   n   n            n 

  bk =  [ Σ hivi  Σ hkvk + (1/3) hk
2vk

2] / ( Σ hivi)    (2) 
i=k+1   i=k            i=1 

         n            n 
   VRMS

2 = ∑vkhk / ∑ hk/vk 
        i=1          i=1 

 
Here hk is the thickness of the k-th layer, vk(x) is an interval velocity in this layer, 
sk(x) = 1/vk(x) stands for slowness. Let us analyse this formula and make some 
conclusions about the influence of lateral changes in interval velocities on  
stacking velocities.  
 



Formula (1) shows that nonlinear variation of the interval velocities creates a 
bigger influence than the gradient. Gradient of the interval velocities fits into 
stacking velocities in the second power. Since we took into account only linear 
changes, equation (1) does not include the first derivatives of the interval 
velocities. 
 

The second multiple in the right side of (1) (the difference between this multiple 
and 1) shows the difference between the stacking and RMS velocities. The value 
of the dimensionless sum within the brackets exactly affects the difference 
between the RMS and stacking velocities – the larger the sum the bigger is the 
difference. This sum represents all laterally inhomogeneous layers. From (1) it 
follows, that the larger the sickness hk the bigger is the influence of the k-th 
inhomogeneous layer on the stacking velocity VNMO 
 

Coefficient bk reflects the influence of the k-th inhomogeneous layer – the larger 
this coefficient the more is the influence of this layer on the stacking velocity. The 
value of this coefficient depends on the position of this layer in the ground. Let us 
consider the k-th layer and its influence on the difference between RMS and 
stacking velocities with deeper reflection boundaries – i.e. with “n” increasing. For 
bk we can write an approximate formula: 
 

    n            n                
    bk ≈  (Σ hivi)2 / ( Σ hivi)      (3) 

  i=k          i=1 

 
This formula shows that with n increasing the numerator increases as second 
power of the sum and denominator only as a first power that is much slower. It 
implies that the influence of the inhomogeneous layer increases with greater 
reflector depth and with a decrease in the depth of the inhomogeneous layer. 
Often the biggest lateral velocity changes, we can see at the shallow part of the 
section.  
 

Taking this into account, let us consider a layered medium with all laterally 
homogeneous layers except the first layer. Then the formulas (1) and (2) can be 
written in the way: 

                 n 

         1/VNMO
2 = 1/VRMS

2 (1 + h1s1′′Σ hivi)   (4) 
                 i=2 

In terms of velocity, this formula can be rewritten as: 
 

              n 

          1/VNMO
2 = 1/VRMS

2 (1 - h1v1′′Σ hivi /v1
2)   (5) 

             i=2 

 

 
Formulas (4) and (5) show, that stacking (NMO) velocity can be either less or 
bigger than RMS velocity. It depends on the sign of the slowness second 



derivative s1′′. It’s obvious that the deeper is reflector (the bigger is the some in 
the round brackets) the more is the difference between RMS and stacking 
velocities. From (4′) it follows, that, for deep reflectors, the stacking velocity 
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T2(L) = T0
2 + L2/ VNMO

2 + …    (6) 
 

inding the second-order derivative at the point L=0, we obtain the connection 

multiple) and laterally inhomogeneous 
overburden layer. If the reflector is 
shallow, than the second multiple is 
close to 1 and NMO velocity repeats
behavior of RMS velocity. For the 
reflector depth increasing, the sum in 
the brackets is growing and its influ
on NMO velocity values is increasing. 
For deep reflector, the stacking velocity 
repeats the behavior the second-order 
derivative of the shallow velocity v1(x). 
This is very well seen on the Fig. 1, 
where the interval velocities (a), 
boundaries (b) and near-zero-offset 
(NMO interval 800 m) stacking ve
(c) are shown. The stacking velocity 
behavior (c) is very close to that
second-order derivative (with the scalar
from (5)) of the first interval velocity. The 
same quality holds for the curvilinear 
boundary (Blias, 1981, 1987, 1988,
2002). Because of deep reflector, the 
stacking velocity behavior just reflects 
the behavior of the second-order 
derivative of the curvilinear shallow

boundary. This fact explains why we should not expect stacking velocity to rep
average (or RMS) velocity behavior when we have strong nonlinear lateral 
velocity changes in the shallow part of the section. 
 

  
C
 

e the differential stacking velocity, we mTo calculat
derivative of the moveout time at the point L = 0. For moveout t(L) where L i
offset, we can write the Taylor series presentation: 
 
 

F
between differential velocity and moveout derivative: 
 

)(1 0NMO LLttV ⋅=      (7) 



 

where t(L) – moveout, L – offset, the s  
a y 

connected with the 
 

 notations: t(y) is traveltime 

 

econd derivative tLL of the function t(L) is
considered at the zero-offset point L = 0, t0 = t(0) – norm l incident time. We ma
also think of the differential velocity as a velocity found through ray tracing and 
moveout hyperbolic approximation for a very small offset. 
 

rom (2) it follows that differential NMO velocity is directly F
second-order moveout derivative tLL at the zero-offset ray. First of all, as shown
by S. Gritsenko and V. Chernjak (Gritsenko and Chernjak, 1979), this derivative 
is equal to one half of the second order derivative of the one-way traveltime from 
the zero-offset reflection point. This second-order derivative we will calculate 
using an approach developed by E. Blias, S. Gritsenko and V. Chernjak (Blias et 
al. 1984). In this paper, an algorithm for all traveltime derivative layerwise 
calculation has been suggested. We are interested only in a layerwise calculation 
of the derivative with respect to receiver coordinates. 
 

et us use theseL
from the zero-offset reflection point to the 
boundary g(y); t(x) is traveltime from the 
zero-offset reflection point to the next 
boundary f(x) along the ray, Fig. 2. If we 
know the second-order derivative tyy along
the boundary g(y) (as if the receiver is on 
this boundary), then the second-order 
derivative txx along the next boundary f(x) 
along the ray can be calculated according 

 
to the formula: 
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    (8) 

 
ere τ is the time in the layer between the points g(y) and f(x). To use formula H

(8), we need to find the second-order derivatives of the vertical time in the layer 
with laterally changing velocity. Formulas for these derivatives were obtained in 
(Gritsenko and Chernjak, 2001): 
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the distance between the points f(x) and 

 

 

Here n(x) is a slowness, s stands for 
g(y), that is s = |g(y) – f(x)|. The scheme for the calculation as follows: We 
calculate the second-order derivative on the top of deepest layer using the first



formula (9). Then, knowing this derivative, we use formulas (8) (here tyy is known 
from the previous step) and formulas (9) to recalculate the second order 
derivatives on the top of the shallower layer. Then we go to the next uppe
along the vertical ray and so on, until we reach the measurement surface. If we 
linearize (at each step) the formulas with respect to the second-order boundary 
and interval velocity derivatives, we obtain formulas derived by one of the 
authors (Blias, 1981, 1988, 2002). Actually, here we have recurring way of 
formulas, if we linearize them. 
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V
differential velocity depends only on a velocity model. Because the integr
stacking velocity is finding on the spreadlength (offset interval), it depends o
source and receiver locations in this interval. As was stated above, the less the 
interval length, the closer is integral velocity to the differential velocity. On the 
other hand, the less the spreadlength the bigger is the influence of the source-
receiver position on the integral velocity. This influence is very big if the source
interval is bigger than the receiver one. 
 
U
connected with non-hyperbolic moveout. Indeed, if moveout is exactly h
the integral and differential velocities are the same. Usually the larger the offset 
interval the more non-hyperbolic moveout is and the more difference between 
differential and integral velocities would me. However, when we have lateral 
velocity changes, the difference between differential and integral velocities ca

increase even when we have a very 
small difference between moveout an
its hyperbolic approximation. It means 
that this almost hyperbolic moveout can
change significantly because of lateral 
velocity changes within the increasing 
measurement interval.  
 
T
model with permafrost thaw, Fig. 3. This 
model reflects the geology of Tymir 
district in northern Siberia. First let u
consider the geometric influence on the

the stacking velocity for the deepest 
reflector for the different interval 
lengths. This plot shows that the 
smaller the NMO interval the bigg
is the integral velocity oscillation. For
the shortest interval (850 m) stacking 
velocity changes are up to 50m/s 
while for the longest they are less 

er 
 



than 5m/s. In velocity analysis we find integral NMO velocity and for the shallow 
reflectors lateral velocity changes can be significant because of muting. Fig.
shows differential (red line) and integral (blue) velocities with 850m NMO inter
Because integral velocity was calculated for the short NMO interval, the h
frequency difference between these velocities was caused by geometry chang
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Fig. 6 shows differential (red line) and 

r 

ial 
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integral. The difference between integral (

integral (blue) velocities with 2550m 
NMO interval. This plot shows that fo
big NMO interval velocity can be 
considered as smoothing different
velocity. On the long NMO 
measurement interval, integ
slightly depends on geometry (set of 
the offsets), so it has less oscillation 
than differential stacking velocity. At 
the same time, Dix’s type inversion 
formulas require differential velocity 
that cannot be covered from the 

obtained from real data) and differ
(calculated fro the second-order 
NMO derivative) can lead to the e
in interval velocity estimation. 
 
L
allows us to find integral NMO 
without an expensive raytracing
procedure. While calculating 
differential velocities with the 
formulas (8) and (9) we have to 
calculate the first and second-ord
derivatives of the boundaries and 
interval velocities along the zero-



offset ray. To find these derivatives, we use parabolic approximations of interv
velocities and boundaries around the vertical ray. The length of the interval for 
parabolic approximation affects the value of these derivatives, which, in their 
turn, influence the value of the differential velocities. The larger the 
approximation interval the less is the oscillation of the second derivatives and th
less is the oscillation of the differential NMO velocity. We can find the length of 
the approximation interval for which the difference between differential and 
integral velocities is the least. Fig. 7 shows differential velocity calculated for the
optimum approximation interval 2550m (--), integral stacking velocity for 2550 
NMO interval (--) and differential velocity (--) smoothed with the a smoothing 
window of 2.5 km. This plot shows that to find integral stacking velocity, inste
of smoothing differential velocity, we can choose a proper approximation inter
to calculate interval velocity and boundary derivatives.  
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his fact shows that we can find integral velocities using differential velocities 
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et us go into some detail about 
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hoosing optimum approximation intervals for the derivative calculations we can 

T
and an appropriate approximation interval for the derivative calculation. The 
question is how this optimum approximation interval depends on the model. T
test it, we ran calculations on the more complex model (Fig. 8) and we have got 
the same result (Fig. 9). It’s interesting that smoothing of the differential velocity 

gives worse result than using optimum 
approximation interval for the derivative 
calculations. A very important feature of 
this is that we can use Dix’s type 
inversion for the differential velocities 
(which are very close to the integral) 
and this inversion will give us a better
result than if we use a small (non 
optimum) approximation interval fo
derivative calculations.  
 
 
L
boundary and interval velocity derivative 

calculation. Fig. 10 shows maps of the standard deviation between differential 
and integral velocities. The optimum (dark brown) area is big enough so we can
choose the approximation interval in a wide range. This means that the length of 
the optimum interval slightly depends on the velocity model. For two models (Fig. 
3 and Fig. 8) we can choose the same approximation intervals (one for the 
interval velocity and another for the boundary).  Optimum approximation inte
for the interval velocities is little less then the NMO measurement interval. For the
boundaries, this interval is a little less than half of the boundary depth and it can 
be chosen from a wider range than for the velocity.  
 
C
calculate integral velocities only through zero-offset raytracing and formulas (8) 



and (9). Moreover, we can use Dix’s type of inversion and apply them to the 
integral velocities. 
 

In conclusion, let us consider 
stacking velocities below the 
permafrost thaw. Fig. 11 shows 
interval velocities (b) and 
stacking velocities for all 
reflectors. The extremum of the 
shallow stacking velocity has 
the same sign as the interval 
velocity in the first layer. For 
deeper reflectors, extremum 
has the opposite sign and the 
oscillations become bigger. This 
behaviour can be explained 

through the formulas (1), (2). For the shallow reflections, the second scalar in (1) 
is close to unit so the stacking velocity is close to the RMS velocity, which is kind 
of average velocity. Zone of increasing first layer velocity corresponds with the 
same zone of RMS velocity.  

 
 
When we go to deeper reflectors, the 
absolute value of the sum in the 
brackets becomes bigger and starts to 
play a significant role in stacking velocity 
behaviour. In the permafrost thaw zone, 
the first layer has the biggest lateral 
velocity changes, so we can neglect the 
other lateral velocity changes and use 
formula (5). This formula can be 
rewritten in the way: 
 

           n 

          VNMO
 = VRMS

 (1 + ½ h1v1′′Σ hivi /v1
2)   (10) 

          i=2 

 

This formula shows that, for deep reflectors (for big values of the second term in 
the brackets), the behaviour of stacking velocity repeats the behaviour of the 
second derivative of the velocity in the first layer, with the scalar h1v1 + h2v2 +…+ 
hnvn, that increases with the depth of the reflection boundary. At the same time, 
for shallow reflectors, the second multiple in (10) is close to unit and the 
behaviour of stacking velocity repeats the behaviour of RMS velocity that is close 
to average velocity. This is what we see on the Fig. 11, which shows stacking 
velocities for all boundaries. 
 



Conclusions 
 
We considered two types of velocities: near-zero-offset NMO (VNMO) and stacking 
velocity for a long NMO interval (VSTACK). Stacking velocities depend not only on 
velocity model but also on spreadlength and NMO geometry. VNMO depends on 
the smoothing interval for the second-order derivative calculation. We can adjust 
the smoothing interval in such a way that the velocities, connected with the 
second moveout derivatives (VNMO), would be close to the spreadlength stacking 
velocities VSTACK. To calculate near-zero-offset NMO velocities, we use the 
second-order moveout derivatives.  
 
We also analytically investigated the influence of the overburden velocity 
anomalies on the near-zero-offset NMO velocities. It was shown that, for a deep 
reflector, stacking velocity repeats the behavior of the second-order derivative of 
the shallow velocity v1(x). 
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