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ABSTRACT 
 
Summary 
 
We analyze the amplitudes produced by shot-record migration using one-way 
wavefield extrapolation in a v  medium. By comparing these amplitudes with 
those produced by true-amplitude Kirchhoff migration, we identify the 
amplitude and phase errors that come from a standard implementation of 
migration by one-way wavefield extrapolation. Next, we present a new 
formulation of shot-record migration that maintains its high fidelity in imaging 
complex structures and has correct dynamic behavior for a  velocity. In 
numerical tests we show that true-amplitude common-shot migration 
produces an asymmetric impulse response, and we give a physical 
explanation for this behavior.  
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Introduction 
 
Until recently, Kirchhoff migration has been used for most 3-D prestack 
migrations, primarily because of its versatility and efficiency.  The demands of 
imaging increasingly complex geological structures, however, have spurred a 
demand for increased imaging fidelity.  This has led to the growing popularity 
of imaging methods that handle more than the single arrival that Kirchhoff 
migration is capable of handling conveniently.  Such methods include finite-
difference migration, which allows for an unlimited number of arrivals.  In this 
paper, we concentrate on one-way wavefield extrapolation, paying particular 
attention to its amplitude and phase behavior. 
The standard formulation of finite-difference migration (Claerbout, 1985) 
consists of two parts.  The first part is the downward continuation of the 
wavefields from the source and receiver locations using a split “wave 
equation.” The second part is the application of an imaging condition, and one 
standard imaging condition is the division of the downward continued receiver 
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wavefield by the downward continued source wavefield at each image point.  
Unfortunately, the one-way “wave equations” used in the downward 
continuation are not equivalent to the acoustic wave equation whose behavior 
they are designed to mimic. This mismatch leads to a migrated wavefield that 
lacks correct amplitude and phase behavior, even though it is kinematically 
correct. By expressing the downward continued wavefields asymptotically, we 
are able to compare the imaged wavefield with the reflection coefficient 
produced by true amplitude Kirchhoff migration. Our comparison leads to a 
corrected equation for the upgoing and downgoing wavefields. When these 
corrections are applied, the migration produces images whose amplitudes and 
phases agree with true-amplitude Kirchhoff migration.  
 
Theory 
 
We begin with a layered velocity ( ) earth and 3D common-shot migration. 
Given an acoustic wave-field p with source excitation at 

)(zv

)0,,( sss yxx =
r  and t , 0=

 ),()();(2

2

2

2

2

2

22

2

txxtxp
yxztv s δδ rrr

−=








∂
∂

−
∂
∂

−
∂
∂

−
∂
∂  (1) 

we record the surface data Q : 
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According to Bleistein et al.’s (2001) work on inversion, the true-amplitude 
common shot Kirchhoff migration formula is (Zhang, et al., 2000) 
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where ψ  and σ  are in-plane and out-of-plane geometrical spreading terms 
and and 0sα 0rα  are surface angles at shot and receivers, respectively (see 
Figure 1); hat denotes temporal Fourier transform. 
 

 
Fig. 1: Ray paths in a  medium )(zv

 
For conventional common-shot migration, we downward continue both shot 
and receiver wavefields, D  and U , which we assume to satisfy the following 
equations (Claerbout, 1985) 
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Here  is the square-root operator. To produce the image, we use the 
imaging condition 
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For a  medium, Zhang et al. (2001a) give an asymptotic expression for the 
one-way wave fields: 
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Substituting (7) and (8) into (6), we obtain 
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Comparing (9) with (3), we conclude that the algorithm (4-6) cannot provide a 
true amplitude image; even the phase term ωi  is missing from (9). 

In Zhang et al. (2001b), we give a remedy to correct the amplitude for 
constant velocity, but an additional correction term needs to be applied for a 

 medium. Here we formulate the following modified phase-shift migration 
algorithm which gives the true amplitude common-shot migration result for v  
velocity. Its generalization to a completely heterogeneous v  acoustic 
medium appears in Zhang et al. (2002).  
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 denote the spatial-temporal Fourier transform of the 
wavefield . Instead of solving for); ty D  and U , we propose to solve for 
pressure fields  and , which satisfy the following equations (Zhang, 
1993) and boundary conditions: 
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and 
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Also, we modify the imaging condition (6) to be the quotient of the 
wavefields  and : Dp Up
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It can be proved that equations (10) and (11), together with imaging condition 
(12), are equivalent to equation (3) in the high-frequency limit.   
 
Numerical tests 
 
Fig. 2 (left) shows 3-D migrated impulse responses along the center inline 
from a trace with three 7.5Hz Ricker wavelets at depth 1000m, 2000m and 
3000m.  The source is at crossline 121 and receiver at crossline 141; trace 
spacing is 50m in both inline and crossline directions.  The medium velocity is 
2000m/s. According to the theory of true-amplitude Kirchhoff migration (i.e., 
from equation (3), using expressions for α, ψ, and σ from Bleistein et al. 
(2001)), the common-shot migration weight is 
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amplitudes of the impulse responses is asymmetric in rs and rr, with a bias on 
the receiver side.  Fig. 2 (right) shows the numerical peak amplitudes along 
the impulse responses, in good agreement with the theoretical prediction. 

The Kirchhoff weight for 3-D common-offset migration is 
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which is symmetric in rs and rr. The asymmetry of the impulse response for 
true amplitude common-shot migration appears to violate physical intuition. 
(Shouldn’t the formula be the same if source and receiver locations are 
interchanged?)  We resolve this paradox by noting that, in true amplitude 
migration, the migration weight is used to compensate for the ray density at all 
the image locations. Fig. 3 shows that, for constant velocity, common-offset 
migration, the subsurface ray density on the left and right dipping reflectors 
are the same. In common-shot migration (Fig. 4), the situation is different.  
Since the travel distances for the reflections from the left and right reflectors 
are essentially the same, their geometrical spreading losses are equal. If the 
reflectivities on the left and right reflectors are also the same, the amplitudes 
of reflections from both dipping reflectors are identical. On the other hand, 
from Fig. 4 we see that the subsurface ray density is greater on the shot side 
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than on the receiver side.  Therefore, to obtain balanced migrated amplitudes 
(which are proportional to reflectivity), the migration weight needs to take this 
ray density difference into consideration. Some detailed algebra shows that 
the common-shot migration weight compensates exactly for the ray density 
difference. 

Fig. 5 shows a 2-D true amplitude migration result from a single shot over four 
flat reflectors with density-only contrasts in a medium with velocity 

. The input data (top panel) was generated by applying 
geometrical spreading to equal-amplitude Ricker wavelets with traveltimes 
computed analytically. The bottom left panel is the migrated shot record. The 
peak amplitudes along the four migrated reflectors are shown in the bottom 
right panel.  Aside from the edge effects and small amounts of jitter caused by 
interference with wraparound artifacts, the  true amplitude common shot 
migration recovers the reflectivity accurately.  
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A word of warning about true-amplitude common shot migration: the 
formulation resulting in equation (3) assumes an areal array of receivers for 
each shot, covering an infinitely extensive recording surface.  Clearly, 3-D 
marine streamer data, with a relatively narrow swath of long cables, violates 
this assumption.  As a result, equation (3) should be modified in practice to 
account for an acquisition geometry that is partly 2-D and partly 3-D.  In the 
limiting case of a single streamer, the migration formula (3) becomes a 2.5-D 
formula, with phase factor ωi , not ωi .  In practice, our wavefield extrapolation 
true-amplitude formula needs to match this phase factor. 

Conclusions   

Migrations based on one-way wavefield extrapolation offer the potential of 
greater structural imaging quality than single-arrival Kirchhoff migration. 
However, the standard formulation of such migrations, e.g. finite-difference 
migration, produce incorrect migrated amplitudes. By comparing these 
amplitudes with those produced by true-amplitude Kirchhoff migration, we 
have, in effect, calibrated these migration methods, correcting their amplitude 
and phase behavior. 
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Fig. 2: Left: 3-D phase-shift migrated impulse responses along the center 
inline. The shot is at crossline 121 and receiver at crossline 141. Right: 
Amplitudes of the 3-D migrated impulse responses. 

 
Fig. 3: Ray density for common-offset migration onto dipping reflectors. 
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Fig. 4:  Ray density for common-shot migration onto dipping reflectors. 
 
 

 
 

 

Fig. 5: Top: 2-D shot record from four flat reflectors in a medium with velocity 
. Bottom left: migrated shot record. Bottom right: Peak 

amplitudes along the migrated reflector. 
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