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ABSTRACT 
Rock physical properties such as Young's modulus, Lame parameters and rock 
strength are essential for applications like borehole instabilities during drilling. 
These properties play also an important role at the time of adding interpretative 
value to seismic data during exploration and development stages. 
 
In this presentation, we propose a method that propagates sparsely distributed 
rock physical properties derived from boreholes to a dense grid where 2D/3D 
seismic data exist.  
 
The technique, Support Vector Machine (SVM), will be used to link borehole 
mechanical properties and seismic attributes near the borehole to propagate 
properties from the given boreholes to any proposed location within the 3D 
seismic data volume.  
 
Synthetic and real data examples are used to illustrate the ability of the SVM to 
predict rock physical from seismic data. 
 
Introduction 
 
Rock mechanical properties are an essential piece of information for applications 
like borehole instabilities analysis during drilling. It is estimated that borehole 
instability problems cost the oil industry worldwide about 1.0 billion dollars per 
year (Erling, et al., 1996).  
 
Traditional methods of propagating mechanical properties from a given borehole 
to a proposed borehole are based on parameter shifting and spatial interpolation. 
The validity of these methods, in general, decreased when dealing with a sparse 
and distant collection of boreholes.  The propagation of mechanical properties in 
these situations carries a significant amount of risk. Fortunately, seismic data 
possess high lateral resolution, and therefore, it can be used in conjunction with 
borehole data to propagate mechanical properties in an area of interests. 
 



In fact, seismic multi-attribute interpretation has been widely used during oil/gas 
development and exploration (Hampson, et al., 2001; Fouad, et al., 2002).  A 
variety of seismic attributes such as: instantaneous frequency, impedance, 
energy, etc., can be extracted for the stacked seismic data. In addition, if high 
quality pre-stack seismic data are available, Radon Transform can help us 
extract pre-stack attributes by transforming the seismic intercept-offset domain 
data to intercept-velocity space; in this new domain  velocity clusters represent 
the energy of different seismic signals (primary and/or multiples). 
 
In this paper, the Support Vector Machine (Tipping M.E., 2001) will be used to 
link post-stack seismic data and/or pre-stack seismic attributes to rock 
mechanical properties. 

 
SVM has been gaining popularity in regression and classification due to its 
excellent performance at the time of dealing with sparse data and good empirical 
performance. Our implementation of the SVM technique requires borehole 
mechanical properties and seismic attributes near the borehole. During the 
training phase, the SVM will develop a functional mapping between an input 
vector (attributes) and a target output (mechanical properties at the borehole). 
The functional, is later on used to predict rock physical properties at any location 
within the seismic volume. 
 
Rock Mechanical Properties 
 
Most materials have an ability to resist and recover from deformations produced 
by forces. This ability is called elasticity. The simplest relationship between 
applied stresses and resulting strains is the linear relationship. 
 
Considering a sample of length L and width D, the cross sectional area is . 
When the force F is applied on its surfaces, the length of the sample is reduced 
to L’ (L > L’) and the width of the sample is increased to D’ (D’ > D). The applied 
stress is then

2DA =

AFx /=σ , and the corresponding elongation is L/LLx )'( −=ε ; the 
lateral elongation is DDDz /)'(y −== εε . If the sample behaves linearly, there is 
a linear relation between xσ  and xε , where the relation can be written: 
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The ratio between lateral and vertical elongation is defined as: 
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Equation 1 is known as Hooke's law, where the coefficient E is called Young's 
modulus. The ratio in equation 2 is known as Poisson's ratio. It is a measure of 
lateral expansion relative to longitudinal contraction. 
 



For isotropic materials, the general relations between stresses and strains are 
written as: 
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The coefficient λ  is known as the Lame parameter; µ  is shear modulus. 
Another important elastic modulus is the bulk modulus K. It is defined as the ratio 
of hydrostatic stress pσ  relative to the volumetric strain vε .  For hydrostatic stress 
state we have zyp x σσσσ == =  and zyxv εεεε ++= . The ratio  can be defined:  
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If the stress is uniaxial ( 0== zy σσ ), the Young's modulus (E) and Poisson Ratio 
)(ν are defined as: 
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For most rocks, the Poisson's ratio is typically in the range 0.15 - 0.25. But, for 
weak, porous rocks, the Poisson’s ratio will approach zero or even become 
negative.  
 
Rock Mechanical Properties from Well Logs 
 
The most important and direct method for the estimation of rock mechanical 
properties is acoustic logging. The compressional and shear velocity can be 
easily extracted from acoustic logging tools such as Schlumberger DSI. 
According to the acoustic wave propagation theory, the primary and secondary 
wave velocities can be expressed as: 

ρ
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Because the , v  and densitypv s ρ  are available after acoustic logging, we can 
express the elastic coefficients discussed in above section in terms of the 
acoustic velocities: 

22

22

2

3
4

2

sp

sp

s

vvK

vv

v

ρρ

ρρλ

ρµ

−=

−=

=

                     

)(2
2

)43(

22

22

22

222

sp

sp

sp

sps

vv
vv

vv
vvv

E

−

−
=

−

−
=

ν

ρ

 (7) 

 
Rock Mechanical Properties from Seismic 
 



Seismic velocity estimation is one of the main objectives of seismic data 
processing. Velocity provides us valuable information about subsurface 
structures and the behavior of rocks. 
 
Since the mid 90', AVO inversion methods have been gradually gained popularity, 
especially in the exploration and development of gas pools. AVO research has 
shown that both P and S reflectivity can be estimated from seismic data and, in 
addition, rock mechanical properties such as the Lame Parameters can be 
extracted from pre-stack seismic data to provide more interpretative value to the 
seismic probe (Goodway 2002; Gray, 2002). 
 
In the pre-stack case, our attributes are pre-stack CMP gathers transformed to 
velocity space via the hyperbolic Radon Transform. We use a direct 
implementation of the adjoint Radon operator (Beylkin G 1987; Liu & Sacchi 
2002) given by  
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Where  indicates CMP gather in offset-time domain, )t,h(d ),(~ τνm the Radon 
panel in velocity-intercept time space, t is two-way travel time, τ  represents the 
two-way zero offset time, ν  is NMO velocity and h denotes the range of offset.  
 
In the post-stack case, we directly use the time samples of the seismic traces in 
the vicinity of borehole as attributes.  
 
Support Vector Machine 
 
Given a set of Radon based attributes vectors { },...,1, Nnxn =  along with the 
corresponding rock mechanical property targets { },...,1, Nntn =  from several 
boreholes.  The SVM makes predictions based on a function of the form: 
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where { }nω  are the model weights and K(.,.)  is a kernel function. 
x~  is a set of samples of input vectors. t(x) is the vector of target values. Hence, 
training involves estimation of the appropriate weighting parameters{ }nω . In 
Table 1 we list some choices of the kernel function. 
 
Given the dataset of input-target pairs (x,t), we follow the standard formulation 
and assume p(t|x),     the conditional probability of the target vector given the 
input vectors, is well represented by a  Gaussian distribution.  
 
The likelihood of the dataset can then be written as: 
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Where , {},...,,{ 21 ntttt = }nω  is the NX(N+1) ‘design’ matrix with 
)}(),...,(), 21 xxx({ Nφφφφ = transition, wherein  

'
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 is a kernel function. Once the priors are defined, the posterior over the weights is 
then obtained from Bayes' rule: 
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Where the posterior covariance and mean are ∑  and µ  respectively with 
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By integrating out the weights, the maximization of  yields: ),|( 2σαtp
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To obtain α , we differentiate equation 14 and after a few mathematical 
manipulations we arrive to the following expression: 
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Where we have defined the quantities: iiii ∑−= αγ 1  and iµ  being the  
posterior mean weight, and ∑  is the i diagonal element of the posterior weight 
covariance computed with the current 
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In practice, during iterative re-estimation, many of iα  tend to infinity. Hence, the 
associated  becomes highly peaked at zero. The corresponding 
basis functions are thus pruned. This, in general, leads to a sparse 
representation of the weights. 
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Rock Mechanical Properties Propagation 
 
As stated above, incorporation of seismic information to the property propagating 
process confers an important advantage because it enables the incorporation of 
geological constraints and lateral variations to the propagating solution. However, 
defining empirical relations between borehole property and seismic attributes 



may require a correct depth-to-time conversion, and more importantly, require a 
bridge to connect the seismic attributes and borehole properties.  
 
In this paper we have presented a method that propagates borehole mechanical 
properties using seismic attributes extracted from post and/or pre-stack seismic 
data based on the SVM. The SVM-based property propagation can be 
summarized as: 
 

1. Select a corridor of interest in the section and borehole derived properties 
at location within the seismic volume.  

2. Extract the pre-stack seismic attributes from CMP gathers near selected 
boreholes via the Radon Transform (in the pres-stack case). Alternatively, 
use stacked traces as attributes. 

3. Define rock mechanical properties and seismic attribute pairs to train the 
SVM. 

4. Use the Bayesian algorithm outlined above (Mackay, 1992; Tipping, 2001) 
to train the SVM. 

5. Propagate the desired properties to new spatial locations in the seismic 
volume.  

 
Applications 
 
We illustrate the performance of the proposed method with two examples. First, 
we analyze a synthetic example. Then, we examine a field data example. 
 
We generate a 100-CMP gather synthetic dataset in a six-layer model (Table 2), 
with variable dipping reflectors, each having different velocity and density. Each 
synthetic CMP gather consists of 91 traces of 542 samples per trace. 
 
We first assume that there exist 3 boreholes, Well 1,2, and 3 located at CMP 
positions 1001, 1049 and 1099, respectively. The six-layer model and three 
boreholes are shown at Fig. 1. Fig. 2 portrays the three CMP gathers (left) in the 
vicinity of the three boreholes; we also display the Radon gathers (right) that 
were used as input attributes. 
 
We test our algorithm by training the SVM with 1, 2 and 3 boreholes, respectively. 
In all these scenarios, we have attempted to reconstruct the mechanical 
parameter λ on the entire volume. The results are portrayed in Figs 3, 4 and 5. 
Note the excellent agreement between the true model and the predicted model 
obtained with the SVM when the three boreholes are used in the training process 
(see Fig. 5). 
 
The second example is a field data example. The SVM was trained using post-
stack seismic attributes instead of pre-stack seismic attributes. We encountered 



difficulties at the time of extracting pre-stack attributes from this particular data 
set. We believe that the low SNR of this particular survey might have hampered 
our efforts.  Fig. 6 portrays the stack section corridor of interest. There are three 
boreholes, at CDP positions 148, 1523 and 1911. In Fig. 7 we portray the 
synthetic seismic traces obtained from sonic derived reflectivity 
 
During the training phase, post-stack seismic data will be the SVM input and log-
derived velocity will be the SVM output. Well 2, for example, is selected to train 
the SVM. The log-derived velocity will be propagated from CDP 100 to CDP 2480 
through the seismic corridor. Figure 8 shows a velocity section predicted from 
SVM. The three blank curves are log-derived velocity. It clearly demonstrates 
that the predicted velocities are in agreement with log-derived velocities at Well 3; 
the agreement is not as good at Well 1. However, if the three Wells are selected 
to train the SVM, the propagated velocity section (Fig. 9) seems reasonable, 
especially at the position of Well 1. 
 
Conclusions 
 
A new method to integrate borehole and seismic attributes was proposed. The 
method is based on the application of an unsupervised learning method, Support 
Vector Machine, to guide borehole-derived properties through a seismic volume. 
The SVM can be either trained with pre-stack or post-stack seismic attributes.  
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Table 2 Parameters for six-layer 
Layer No. Compressional 

Velocity (m/s) 
Density 

  )/( 3cmkg
Poisson Ratio 

Layer 1 2100 1.8 0.35 
Layer 2 2400 2.2 0.15 
Layer 3 3400 2.4 0.32 
 Layer 4 2600 2.5 0.12 
Layer 5 4400 2.4 0.30 
Layer 6 5400 1.8 0.40 



 
 

 Fig. 2: CMP gathers (left) and Radon 
attributes (right) in the vicinity of the 
three wells 

Fig. 1: Model Space with three Wells 
 
 
 
 
 Well3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 3: Lame Parameter Propagation 

from Well 1 and Well 2. Left is the true 
model, and right is the SVM predicted 
model. 

Fig. 4: True properties (solid) and 
predicted properties (dash) of Well 3 
propagated from Well 1 and Well 2. 

 
 
  



 
 
 

Fig. 7: Synthetic seismic traces for the 
three wells plus traces in the vicinity of 
the wells.  

Fig. 5: Lame Parameter Propagation 
from Well 1, Well 2 and Well 3.  Left 
is the True Model, and right is the 
SVM predicted result 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8: Predicted velocity section 
from Well 2.  The three black 
curves are the true velocity 
profiles calculated from sonics. 

Fig. 6: The seismic corridor of 
interest with three wells (Well 1, Well 
2 and Well 3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

 

Fig. 9: Predicted velocity section from 
Well 1, Well 2 and Well 3.  The three 
black curves are true velocity 
calculated from sonic data. 


