

Data Transposition and Helical Scheme in Prestack Finite-
Difference Migration

Yu Zhang

Veritas DGC Inc., 10300 Town Park Drive, Houston, TX 77072, USA.
yu_zhang@veritasdgc.com

Jiandong “JD” Liang*

Veritas GeoServices, 715 - 5 Ave SW, #2200, Calgary, AB, Canada T2P 5A2
jd_liang@veritasgdc.com

and

Guanquan Zhang

Chinese Academy of Sciences, Beijing, China

ABSTRACT

Summary

We analyze the efficiency of implicit prestack finite-difference migration and focus
on data transpositions in the two-way splitting algorithm. We discuss a tiled data
transposition algorithm and how it achieves good efficiency by increasing access
coherence. Then we introduce a helical scheme that eliminates the need for data
transposition in common-shot migration. Numerical examples show that this
helical algorithm can speed up downward extrapolation by 30-40% and produce
comparable imaging quality as non-helical methods.

Introduction

The increasing demand for imaging complex geological structures has led to the
exploration of wave equation based prestack depth migration methods, which do
not suffer from such limitations as high frequency and few arrivals approximation
as in the case of commonly used Kirchhoff migration. However, compared with
Kirchhoff methods, these migration methods that are based on one-way wave
equations are computationally more intensive, especially when 3-D prestack
migrated imaging gathers are required. This has spurred researchers to seek
various ways to speedup these algorithms.

In this abstract, we first focus on the data transposition in prestack finite-
difference migration, which has a significant impact on migration efficiency but is
often ignored in algorithm design. As we will show in the content, the traditional
way of implementing implicit finite-difference scheme with two-way splitting
(Brown, 1983) requires four x to y data transpositions in each downward
continuation step in a prestack common-shot migration, and may take 30-40% of
the total CPU time in wavefield extrapolation, depending on transposition

mailto:yu_zhang@veritasdgc.com

algorithm, data size and hardware. We introduce a tiled data transpose algorithm
based on the principle of memory access coherence and investigate its
performance impact for prestack migration.

Based on some previous work (Zhang et al. 2000, Zhang and Shan 2001), we
then introduce a helical finite-difference scheme for 3-D common-shot migration
that eliminates the need for data transposition. We discuss its implementation
and efficiency in common-shot migration. This helical scheme was firstly
proposed by Zhang in solving 3-D postack depth migration in t-x domain (Zhang
and Hou, 1996). By re-formulating one-way wave equation and its finite-
difference schemes, the helical method accesses wavefield data in memory
sequentially during computation. This makes migration more efficient by saving
memory operations of transposing data. Unlike the helical scheme proposed by
Stanford Exploration Project Group (Rickett, et al., 1998), the method introduced
here is a variant of traditional x-y splitting method and can easily handle lateral
velocity variation. It also has splitting error as other 3-D implicit finite-difference
migrations do and it relies on phase-correction (Graves and Clayton, 1990; Li,
1991; Zhou and McMechan, 1999), multi-way splitting (Collino and Joe, 1995;
Ristow and Ruhl, 1997; Zhang et al., 2000) or other correction methods to
improve its kinematic behavior.

Two-way splitting

The dominant calculation in wave equation migration is wavefield downward
extrapolation. Given upgoing and downgoing wavefields U and D , the wave
propagation is governed by following one-way wave equations

()
() Uv

v
v
i

z
U

yx

yx

∂+∂+
∂+∂

+=
∂
∂

2222

222

1
βω

αω , (1)

and

()
() Dv

v
v
i

z
D

yx

yx

∂+∂+
∂+∂

+−=
∂
∂

2222

222

1
βω

αω , (2)

where v is velocity, α and β are coefficients chosen to approximate the square-
root operator (Lee and Suh, 1985). Directly solving above equations using stable
implicit finite-difference schemes is both numerically difficult and time consuming.
In production, implicit finite-difference with two-way splitting (Brown, 1983) is
extensively used. Taking upgoing wavefield U for example, instead of solving (1),
we actually calculate

 U
v

v
v

v
v
i

z
U

y

y

x

x

∂+
∂

+
∂+

∂
+=

∂
∂

222

22

222

22

1
βω

α
βω

αω . (3)

The discrepancy between (1) and (3) generates so-called splitting error in
migration. Equation (3) can be solved cascadedly

Phase shift: U
v
i

z
U ω

=
∂
∂

, (4a)

x-pass: U
v

v
v
i

z
U

x

x
222

22

∂+
∂

=
∂
∂

βω
αω , (4b)

y-pass: U
v

v
v
i

z
U

y

y
222

22

∂+
∂

=
∂
∂

βω
αω

 . (4c)

In numerical computation, seismic data is stored along a certain direction, say, x-
direction. In this case, operations along x direction are much faster than along y-
direction. Therefore, in implementation, an x to y transposition is usually inserted
between x and y pass splitting, and later the data is transposed back to original
x-order. A typical computation data flow in downward extrapolation is shown in
Fig. 1, which requires four data transpositions in each extrapolation step: two for
upgoing wavefield and two for downgoing wavefield.

Fig. 1: data flow of downward extrapolation in common-shot migration. Usually it
requires four data transpositions.

Data transposition

While data transposition does not involve significant arithmetic calculations, it
accounts for a significant portion of the total migration time. Therefore, we would
like to optimize its performance. Previous optimization efforts have focused upon
minimizing the requirement for additional memory. In this particular case, it is not
a major concern. Another aspect, namely access coherence, is more important.

Modern computer architecture relies on a small capacity high-speed buffer
memory (called cache) to bridge the speed gap between CPU and primary
memory. This mechanism dictates that the performance of an algorithm heavily
depends on its memory access coherence. In particular, it severely penalizes
algorithms with poor access coherence.

A direct data transposition algorithm happens to exhibit poor access coherence.
Suppose we directly transpose an n-row by m-column matrix stored in row order.
If we scan the source data in row order and assign them to the destination
locations, we achieve good access coherence when reading the source data.
However, we have poor coherence when writing to the destination locations, as
each successive element is now n addresses apart. Likewise, if we scan the
source data in column order, then we lose access coherence for the reading part
even though we have access coherence for the writing part.

To achieve good coherence for both reading and writing, we designed a tiled
data transposition algorithm. The idea is to group chunks of data that occupy
coherent memory locations in both the source and destination matrix, and handle
them as one unit at a time. We conceptually divide a matrix into sub-matrices,
called tiles, such that two tiles (one as the source and the other as the
destination) can fit into the data cache of the target computer architecture. We
transpose one source tile into a destination tile at a time, as illustrated in Fig. 2,
where ijA , is a sub-matrix and ()Tjiij AB = .

⇒

pqq

p

pqp

q

BB

BB

AA

AA

L

L

L

L

1

111

1

111

Fig. 2: illustration of tiled matrix transposition.

Assume the data elements are stored in row order. We transpose each tile in the
order: 11A 12A … qA1 21A … qA2 … pqA . This way, reading from each source tile

ijA has good memory coherence, since each row in ijA is stored continuously.
Since we transpose a tile at a time, each row of elements in the destination
tile jiB is also fully set before moving to the next one, therefore achieve good
access coherence in the writing part as well.

Helical scheme

Based on the idea of memory coherence, we introduce a helical scheme in
common-shot finite-difference migration. By discretization, the finite-difference
scheme of Eq. (4b) can be written as
 ()() ()())()(,

1
, ωδδωδδ n

jiyyxx
n
jiyyxx UrIrIUrIrI ++=++ + , (5)

where);,,()(, ωω znyjxiUU n
ji ∆∆∆= , I is the identical operator and δ is the

second-order finite-difference operator, for example
 jijijijix UUUU ,1,,1, 2 −+ +−=δ .
Defining forward and backward first-order finite-difference operators:

jijijixjijijix UUUUUU ,1,,,,1, , −
−

+
+ −=∆−=∆

and noticing following properties between operators +∆ x ,
−∆ x and xδ :

 −++−−+ ∆−∆=∆∆=∆∆= xxxxxxxδ ,
we have
))((−+ ∆−∆+=+ xxxxxx qIqIrI δ , (6a)

where xxx rqq =− 2 . Similarly, for y direction we have
))((−+ ∆−∆+=+ yyyyyy qIqIrI δ . (6b)

Combining (6a) with (6b), we get
()()

))((
))()()((
))()()((

−−−−++++

−−++

−+−+

∆∆+∆−∆−∆∆+∆+∆+=
∆−∆−∆+∆+=
∆−∆+∆−∆+=

++

yxyxyyxxyxyxyyxx

yyxxyyxx

yyyyxxxx

yyxx

qqqqIqqqqI
qIqIqIqI
qIqIqIqI

rIrI δδ

 (7)

The operator factorization and exchange in (7) are valid only when velocity is a
constant. For a general velocity, the operator re-orgnization in (7) does not
change the kinematics of wave propagation, therefore does not affect the
purpose of seismic imaging. Applying finite-difference relation (7) to discretized
one-way wave equation (3), we achieve the following wavefield extrapolation
algorithm:

Phase shift: n
ji

z
v
in

ji UeU ,
3/1

,

∆+ =
ω

, (8a)
Forward:

3/1
,

3/2
,)()(++++++++++ ∆∆+∆+∆+=∆∆+∆+∆+ n

jiyxyxyyxx
n
jiyxyxyyxx UqqqqIUqqqqI , (8b)

Backward:

3/2
,

1
,)()(+−−−−+−−−− ∆∆+∆−∆−=∆∆+∆−∆− n

jiyxyxyyxx
n
jiyxyxyyxx UqqqqIUqqqqI . (8c)

Let us define a helical coordinate system (Claerbout, 1998),
 yx

n
ji

n
Nji NjNiUu
x

LL ,1,,1,,)1(===−+ ,
where xN and yN are the numbers of grid points along the x and y directions,
respectively. In the helical coordinate, the implicit finite-difference schemes (8b)
and (8c) become

,3/1
1

3/13/1
1

3/13/2
1

3/23/2
1

3/2 +
−−

+
−

+
−

++
−−

+
−

+
−

+ +++=+++ n
Nk

n
Nk

n
k

n
k

n
Nk

n
Nk

n
k

n
k xxxx

uducubuaducubuau (9a)

3/2
1

3/23/2
1

3/21
1

11
1

1 +
++

+
+

+
+

++
++

+
+

+
+

+ +++=+++ n
Nk

n
Nk

n
k

n
k

n
Nk

n
Nk

n
k

n
k xxxx

uducubuaducubuau , (9b)

where ()()yx qqa −−= 11 , ()yx qqb −= 1 , () yx qqc −= 1 and yxqqd = . (9a) and (9b)
are like 1-D finite-difference schemes, therefore, they can be solved explicitly and
do not need data transposition. The same algorithm can be applied to downgoing
wavefield D . Coding the helical scheme (9a) and (9b) is simple, as shown by the
following psuedo code:

if (scheme == forward) {
 for (k=1 to xN) 01 =+n

ku ;
 increment=1;
 k= xN ;
}

else (scheme == backward) {
 for (k= yx NN to xyx NNN −) 01 =+n

ku ;
increment=-1;
 k= xyx NNN − ;
}

for (i=1 to yxNN) {
 k=k+increment;
 k1=k-increment;
 k2=k-increment* xN ;
 k3=k2-increment;
 Read velocity v and calculate a, b, c, d;
 (aducubuuducubuau n

k
n
k

n
k

n
k

n
k

n
k

n
k

n
k /)1

3
1

2
1

1321
1 ++++ −−−+++= ;

}

Numerical tests

We first tested tiled data transposition versus direct transposition. In Fig. 3, we
plot the average time required to transpose a data element as a function of the
data width (i.e. the number of rows in the source data matrix). With direct
transposition, this time increases with data width, as can be expected when
access coherence degrades. With tiled transposition, this time stays constant, as
access coherence maintains. Fig. 4 shows the performance ratio of the two
algorithms.

Transposition Time

0

100

200

300

400

500

0 2000 4000 6000

data width

ns
/e

le
m

.

Direct
Tiled

Performance Ratio

100%

150%

200%

250%

300%

350%

0 2000 4000 6000

data width

pe
rc

en
ta

ge

Ratio

Fig. 3: average transposition time per
data element.

Fig. 4: performance ratio of tiled vs.
direct transposition.

In the second test, we migrate a single shot record using implicit x-y splitting
algorithm on a grid with 480=xN and 320=yN . For non-helical program using
tiled data transposition, the total CPU time for downward extrapolation is 2,126
seconds, and transposition takes 665 seconds, about 31% of the total time. We
also tested directly transposition, which takes about 760 seconds for data
transposition. By using helical scheme, CPU time for data transposition is saved,
and the scheme (9a-b) takes about the same time as traditional x-y splitting
solver. Therefore, in this test, helical scheme speeds up the migration by about
32%.

In the third test, we migrated SEG/EAGE model, C3NA dataset, which is a
standard synthetic dataset for testing prestack depth imaging. To obtain steep
dips and attenuate splitting error and numerical dispersion, we apply Zhiming Li’s
correction after x-y splitting in each downward continuation step (Li, 1991). Fig. 5
is a crossline section of our migration output at mx 5040= . The dipping salt
bottom and the flat reflector bellow the salt at depth 3500m are imaged clearly.
The result is comparable to those obtained by traditional two-way splitting
algorithms.

 Nonhelical scheme (sec) helical scheme (sec)
Phase-shift 221 221
x-y splitting solver 1,240 1,189
Data transpositions 665 0
total 2,126 1,410

Table 1: CPU time of downward extrapolating a single shot record, with 480=xN
and 320=yN . In this test, helical scheme saves about 33%.

Fig. 5: Prestack depth migration of SEG/EAGE model, C3NA dataset, x=5040m

Conclusions

Directly implementation of data transposition exhibits poor access coherence and
therefore needs to be optimized. The tiled data transposition algorithm performs
better. Depending on data size, it can achieve acceleration between a few
percent to a few times. We also introduce a helical scheme, which is designed to
eliminate data resorting. Numerical tests show helical scheme is efficient and
produces good depth migration results.

References
Brown, D. L., 1983, Applications of operator separation in reflection seismology:
Geophysics, 48, 288-294.
Claerbout, J., 1985, Imaging the earth’s interior: Blackwell Scientific Publication,
Inc.
Claerbout, J., 1998, Multidimensional recursive filters via a helix with application
to velocity estimation and 3-D migration: 68th Annual Internat. Mtg., Soc. Expl.
Geophys., Expanded Abstracts, 1995-1998.
Collino, F. and P. Joly, 1995, Splitting of operators, alternate directions, and
paraxial approximations for the three-dimensional wave equation: SIAM J. Sci.
Comput., 16, 1019-1048.
Graves, R.W. and Clayton, R.W., 1990, Modeling acoustic waves with paraxial
extrapolators: Geophysics, 55, 306-319.
Lee, M. and Suh, S., 1985, Optimization of One-way Equation, Geophys., 50,
1634-1637.
Li, Z., 1991, Compensating finite-difference errors in 3-D migration and modeling:
Geophysics, 56, 1650--1660.
Rickett, J., Claerbout, J. and Fomel, S. B., 1998, Implicit 3-D depth migration by
wavefield extrapolation with helical boundary conditions, 68th Ann. Internat. Mtg:
Soc. of Expl. Geophys., 1124-1127.
Ristow, D. and Ruhl, T., 1997, 3-D implicit finite-difference migration by multiway
splitting: Geophysics, 62, 554--567.
Zhang, G. and Hou, W., 1996, Factorization algorithm for 3-D postack finite-
difference migration, J. Geophysics (Chinese), 39, 382-391.
Zhang, G., Zhang, Y. and Zhou, H., 2000, Helical finite-difference schemes for 3-
D depth migration, 70th Ann. Internat. Mtg: Soc. of Expl. Geophys., 862-865.
Zhang, G. and Shan, G., 2001, Helical scheme for 2-D prestack migration based
on double-square-root equation, 71st Ann. Internat. Mtg: Soc. of Expl. Geophys.,
1057-1060.
Zhou, H. and McMechan, G.A., 1999, Parallel Butterworth and Chebyshev dip
filters with applications to 3-D seismic migration: Geophysics, 64, 1573-1578.

	Summary
	Introduction
	Two-way splitting
	Data transposition
	Helical scheme
	Numerical tests
	Conclusions
	References

