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ABSTRACT 
 
Summary 
 
We analyze the efficiency of implicit prestack finite-difference migration and focus 
on data transpositions in the two-way splitting algorithm. We discuss a tiled data 
transposition algorithm and how it achieves good efficiency by increasing access 
coherence. Then we introduce a helical scheme that eliminates the need for data 
transposition in common-shot migration. Numerical examples show that this 
helical algorithm can speed up downward extrapolation by 30-40% and produce 
comparable imaging quality as non-helical methods. 
 
Introduction 
 
The increasing demand for imaging complex geological structures has led to the 
exploration of wave equation based prestack depth migration methods, which do 
not suffer from such limitations as high frequency and few arrivals approximation 
as in the case of commonly used Kirchhoff migration. However, compared with 
Kirchhoff methods, these migration methods that are based on one-way wave 
equations are computationally more intensive, especially when 3-D prestack 
migrated imaging gathers are required. This has spurred researchers to seek 
various ways to speedup these algorithms. 
 
In this abstract, we first focus on the data transposition in prestack finite-
difference migration, which has a significant impact on migration efficiency but is 
often ignored in algorithm design. As we will show in the content, the traditional 
way of implementing implicit finite-difference scheme with two-way splitting 
(Brown, 1983) requires four x to y data transpositions in each downward 
continuation step in a prestack common-shot migration, and may take 30-40% of 
the total CPU time in wavefield extrapolation, depending on transposition 
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algorithm, data size and hardware. We introduce a tiled data transpose algorithm 
based on the principle of memory access coherence and investigate its 
performance impact for prestack migration. 
 
Based on some previous work (Zhang et al. 2000, Zhang and Shan 2001), we 
then introduce a helical finite-difference scheme for 3-D common-shot migration 
that eliminates the need for data transposition. We discuss its implementation 
and efficiency in common-shot migration. This helical scheme was firstly 
proposed by Zhang in solving 3-D postack depth migration in t-x domain (Zhang 
and Hou, 1996). By re-formulating one-way wave equation and its finite-
difference schemes, the helical method accesses wavefield data in memory 
sequentially during computation. This makes migration more efficient by saving 
memory operations of transposing data. Unlike the helical scheme proposed by 
Stanford Exploration Project Group (Rickett, et al., 1998), the method introduced 
here is a variant of traditional x-y splitting method and can easily handle lateral 
velocity variation. It also has splitting error as other 3-D implicit finite-difference 
migrations do and it relies on phase-correction (Graves and Clayton, 1990; Li, 
1991; Zhou and McMechan, 1999), multi-way splitting (Collino and Joe, 1995; 
Ristow and Ruhl, 1997; Zhang et al., 2000) or other correction methods to 
improve its kinematic behavior. 
 
Two-way splitting 
 
The dominant calculation in wave equation migration is wavefield downward 
extrapolation. Given upgoing and downgoing wavefields U  and D , the wave 
propagation is governed by following one-way wave equations 
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where v  is velocity, α and β  are coefficients chosen to approximate the square-
root operator (Lee and Suh, 1985). Directly solving above equations using stable 
implicit finite-difference schemes is both numerically difficult and time consuming. 
In production, implicit finite-difference with two-way splitting (Brown, 1983) is 
extensively used. Taking upgoing wavefield U for example, instead of solving (1), 
we actually calculate 

 U
v

v
v

v
v
i

z
U

y

y

x

x











∂+
∂

+
∂+

∂
+=

∂
∂

222

22

222

22

1
βω

α
βω

αω . (3) 

The discrepancy between (1) and (3) generates so-called splitting error in 
migration. Equation (3) can be solved cascadedly 
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In numerical computation, seismic data is stored along a certain direction, say, x-
direction. In this case, operations along x direction are much faster than along y-
direction. Therefore, in implementation, an x to y transposition is usually inserted 
between x and y pass splitting, and later the data is transposed back to original 
x-order. A typical computation data flow in downward extrapolation is shown in 
Fig. 1, which requires four data transpositions in each extrapolation step: two for 
upgoing wavefield and two for downgoing wavefield. 
 

 
Fig. 1: data flow of downward extrapolation in common-shot migration. Usually it 
requires four data transpositions. 
 
Data transposition  
 
While data transposition does not involve significant arithmetic calculations, it 
accounts for a significant portion of the total migration time. Therefore, we would 
like to optimize its performance. Previous optimization efforts have focused upon 
minimizing the requirement for additional memory. In this particular case, it is not 
a major concern. Another aspect, namely access coherence, is more important. 
 
Modern computer architecture relies on a small capacity high-speed buffer 
memory (called cache) to bridge the speed gap between CPU and primary 
memory. This mechanism dictates that the performance of an algorithm heavily 
depends on its memory access coherence. In particular, it severely penalizes 
algorithms with poor access coherence.  
 



 

A direct data transposition algorithm happens to exhibit poor access coherence. 
Suppose we directly transpose an n-row by m-column matrix stored in row order. 
If we scan the source data in row order and assign them to the destination 
locations, we achieve good access coherence when reading the source data. 
However, we have poor coherence when writing to the destination locations, as 
each successive element is now n addresses apart. Likewise, if we scan the 
source data in column order, then we lose access coherence for the reading part 
even though we have access coherence for the writing part.  
 
To achieve good coherence for both reading and writing, we designed a tiled 
data transposition algorithm. The idea is to group chunks of data that occupy 
coherent memory locations in both the source and destination matrix, and handle 
them as one unit at a time. We conceptually divide a matrix into sub-matrices, 
called tiles, such that two tiles (one as the source and the other as the 
destination) can fit into the data cache of the target computer architecture. We 
transpose one source tile into a destination tile at a time, as illustrated in Fig. 2, 
where ijA , is a sub-matrix and ( )Tjiij AB = . 
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Fig. 2: illustration of tiled matrix transposition. 
 
Assume the data elements are stored in row order. We transpose each tile in the 
order: 11A  12A  … qA1  21A  … qA2  … pqA . This way, reading from each source tile 

ijA  has good memory coherence, since each row in ijA is stored continuously. 
Since we transpose a tile at a time, each row of elements in the destination 
tile jiB is also fully set before moving to the next one, therefore achieve good 
access coherence in the writing part as well. 
 
Helical scheme      
 
Based on the idea of memory coherence, we introduce a helical scheme in 
common-shot finite-difference migration. By discretization, the finite-difference 
scheme of Eq. (4b) can be written as 
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second-order finite-difference operator, for example  
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and noticing following properties between operators +∆ x ,  
−∆ x  and xδ : 

 −++−−+ ∆−∆=∆∆=∆∆= xxxxxxxδ , 
we have 
 ))(( −+ ∆−∆+=+ xxxxxx qIqIrI δ ,  (6a) 

where xxx rqq =− 2 . Similarly, for y direction we have 
 ))(( −+ ∆−∆+=+ yyyyyy qIqIrI δ . (6b) 

Combining (6a) with (6b), we get 
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The operator factorization and exchange in (7) are valid only when velocity is a 
constant. For a general velocity, the operator re-orgnization in (7) does not 
change the kinematics of wave propagation, therefore does not affect the 
purpose of seismic imaging. Applying finite-difference relation (7) to discretized 
one-way wave equation (3), we achieve the following wavefield extrapolation 
algorithm: 
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Let us define a helical coordinate system (Claerbout, 1998), 
 yx

n
ji

n
Nji NjNiUu
x

LL ,1,,1,,)1( ===−+ , 
where xN  and yN  are the numbers of grid points along the x and y directions, 
respectively. In the helical coordinate, the implicit finite-difference schemes (8b) 
and (8c) become 
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where ( )( )yx qqa −−= 11 , ( )yx qqb −= 1 , ( ) yx qqc −= 1  and yxqqd = . (9a) and (9b) 
are like 1-D finite-difference schemes, therefore, they can be solved explicitly and 
do not need data transposition. The same algorithm can be applied to downgoing 
wavefield D . Coding the helical scheme (9a) and (9b) is simple, as shown by the 
following psuedo code: 
 



 

if (scheme == forward)  { 
 for (k=1 to xN ) 01 =+n

ku ; 
 increment=1; 
 k= xN ; 
} 
 
else   (scheme == backward)  { 
 for (k= yx NN  to xyx NNN − ) 01 =+n

ku ; 
increment=-1; 
 k= xyx NNN − ; 
} 
 
for (i=1 to yxNN ) { 
 k=k+increment; 
 k1=k-increment; 
 k2=k-increment* xN ; 
 k3=k2-increment; 
 Read velocity v and calculate a, b, c, d; 
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Numerical tests 
 
We first tested tiled data transposition versus direct transposition. In Fig. 3, we 
plot the average time required to transpose a data element as a function of the 
data width (i.e. the number of rows in the source data matrix). With direct 
transposition, this time increases with data width, as can be expected when 
access coherence degrades. With tiled transposition, this time stays constant, as 
access coherence maintains. Fig. 4 shows the performance ratio of the two 
algorithms. 
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data element. 

Fig. 4: performance ratio of tiled vs. 
direct transposition. 



 

 
In the second test, we migrate a single shot record using implicit x-y splitting 
algorithm on a grid with 480=xN  and 320=yN . For non-helical program using 
tiled data transposition, the total CPU time for downward extrapolation is 2,126 
seconds, and transposition takes 665 seconds, about 31% of the total time. We 
also tested directly transposition, which takes about 760 seconds for data 
transposition. By using helical scheme, CPU time for data transposition is saved, 
and the scheme (9a-b) takes about the same time as traditional x-y splitting 
solver. Therefore, in this test, helical scheme speeds up the migration by about 
32%. 
 
In the third test, we migrated SEG/EAGE model, C3NA dataset, which is a 
standard synthetic dataset for testing prestack depth imaging. To obtain steep 
dips and attenuate splitting error and numerical dispersion, we apply Zhiming Li’s 
correction after x-y splitting in each downward continuation step (Li, 1991). Fig. 5 
is a crossline section of our migration output at mx 5040= . The dipping salt 
bottom and the flat reflector bellow the salt at depth 3500m are imaged clearly. 
The result is comparable to those obtained by traditional two-way splitting 
algorithms. 
 
 Nonhelical scheme (sec) helical scheme (sec) 
Phase-shift 221 221 
x-y splitting solver 1,240 1,189 
Data transpositions 665 0 
total 2,126 1,410 

Table 1: CPU time of downward extrapolating a single shot record, with 480=xN  
and 320=yN . In this test, helical scheme saves about 33%. 
 

 
Fig. 5: Prestack depth migration of SEG/EAGE model, C3NA dataset, x=5040m 
 
 
 



 

Conclusions 
 
Directly implementation of data transposition exhibits poor access coherence and 
therefore needs to be optimized. The tiled data transposition algorithm performs 
better. Depending on data size, it can achieve acceleration between a few 
percent to a few times. We also introduce a helical scheme, which is designed to 
eliminate data resorting. Numerical tests show helical scheme is efficient and 
produces good depth migration results. 
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