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ABSTRACT 
 
Summary 
 
This paper demonstrates a methodology to produce high-resolution AVO 
reflectivity attribute estimates similar to sparse spike deconvolution.  The AVO 
estimate is performed prior to NMO avoiding the distortions and loss of frequency 
associated with this process.  Long tailed a priori distributions are used to 
constrain the problem.   The resulting sparse reflectivity is able to resolve thin 
layers and is more reliable than the estimates provided by the traditional AVO 
analysis that is performed on a sample-by-sample basis on NMO corrected 
gathers. This greater reliability is due to the classic trade-off between resolution 
and reliability. With the new method a few sparse reflectivity values are estimated 
with greater certainty than the dense reflectivity at every time sample as in the 
traditional AVO analysis.   
 
Introduction 
 
We present a method for producing high-resolution estimates of AVO reflectivity 
attributes.  The objective is to produce a sparse spike reflectivity series as output 
similar to that done by poststack sparse deconvolution (Levy and Fullagar, 1991; 
Sacchi, 1999; and Trad, 2002).  Further, the methodology presented is 
analogous to the high-resolution Radon transform presented by Sacchi and 
Ulrych (1995).  The new approach provides superior resolution and greater 
reliability than the traditional approach of first applying NMO and then performing 
AVO analysis. 
 
The theory for this new algorithm is developed using a Bayesian formalism.  
Instead of the typical assumption of Gaussian probability distributions, various 
long-tailed distributions are used for the prior distribution.   The likelihood model 
is based on the AVO NMO formalism (Downton and Lines, 2002) where the AVO 
and NMO inversions are performed simultaneously assuming some input 
wavelet.  The inversion is nonlinear and must be solved using a bootstrap 
procedure.  A synthetic seismic example is shown demonstrating the new 
methodology 



Theory 
 
Convolutional model 
The convolutional model is used as the basis for the likelihood model.  This 
model assumes the earth is composed of a series of flat, homogenous, isotropic 
layers.  Ray tracing is done to map the relationship between the angle of 
incidence and offset. Transmission losses, converted waves, and multiples are 
not incorporated in this model and so must be addressed through prior 
processing.  The two-term Fatti approximation (Fatti et al. 1994, equation 4) is 
used to approximate the offset dependent reflectivity over some predefined angle 
range.  The AVO NMO model (Downton and Lines, 2002) solves for the 
reflectivity over some target window given the source wavelet.  By incorporating 
NMO in the inverse problem, distortions introduced by NMO stretch can be 
avoided.This linear model written in matrix notation as  
 d=Lm,  (1) 
where L is the linear AVO NMO operator, d is the data vector in equation and, m 
is the unknown parameter vector describing the reflectivity.  The data vector 
contains N time samples by M offsets while the parameter vector contains 2M 
elements.  This paper assumes the likelihood function is Gaussian for simplicity 
but it might be more appropriate for real seismic data to choose a robust 
distribution. 
 
Prior model 
 
Rather than solving for the P- and S-impedance reflectivity, we choose to solve 
for the P-impedance and fluid stack reflectivity since these two variables are 
uncorrelated.  If we make the typical assumption made in deconvoluiton that the 
reflectivity from different interfaces is uncorrelated, the resulting parameter 
covariance matrix is diagonal.  The fluid stack reflectivity is sparse by its nature 
since it only responds to anomalous fluids.  The P-impedance reflectivity may 
also be modeled as a long tailed distribution (Levy and Fullagar, 1991).  Thus the 
two reflectivity series can be modeled by a variety of distributions including the 
Huber, Cauchy or Lp norm.  Good results were obtained with each of these, but 
for illustration purposes this paper uses the Lp prior.  Sacchi (1999) shows that 
for the case when p=1 this leads to a prior of the form 
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where J is the objective function and Q is a diagonal matrix that is defined as  
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where σm is the L1 standard deviation of the reflectivity and ε is some user 
chosen threshold.  This covariance matrix must be calculated iteratively in a 
bootstrap fashion outlined below.   

Nonlinear inversion 

The Likelihood function (Equation 1) may be combined with the a priori 
probability function (Equation 2) using Bayes’ theorem. There is no explicit 
interest in the variance of the time-domain constraints so it is marginalized (Sivia, 
1996). The most likely solution can then be found by finding where the PDF is 
stationary. This involves taking the partial derivatives with respect to each 
parameter, setting the result to zero, and solving the set of simultaneous 
equations. This results in the nonlinear equation 

      
[ ] ,dLmQLLT T=+ µ

 (4)  

where ) and ε=Lm-d.  There are two sources of nonlinearity in 
Equation (4), the estimate of the regularization parameter µ and the calculation of 
Q. 

( 1/ −= MNTεεµ

The actual inverse problem being quite large is most efficiently solved using 
iterative techniques such as conjugate gradient (Skewchuk, 1994).  Solving the 
inverse problem requires two nested loops.  In the inner loop the conjugate 
gradient algorithm is used to solve Equation 4 using the previously calculated 
values of µ and Q. The maximum number of conjugate gradient iterations is used 
as a parameter to help stabilize the solution (Hansen, 1998).  After solving for the 
reflectivity the estimate of µ and the covariance matrix Q is updated.  Iteratively 
updating these parameters and re-estimating the reflectivity parameters 
constitute the outer loop.  Generally a satisfactory sparse solution is obtained 
after 3 to 5 outer loops. For the first loop the inversion is run as an unconstrained 
inversion by setting µ=0.  Care must be taken in the first outer loop not to put too 
much detail in the solution or the problem will not converge.  This can be 
controlled by carefully setting the maximum number of conjugate gradient 
iterations parameter to a value that limits resolution.   
 
 
 
 



Example 
 
Fig. 1 shows the density, P- and S-velocity model used to generate the synthetic 
gather used in the testing.  The S-velocity for most of the model follows the 
mudrock line.  There are 3 anomalous zones off the mudrock line simulating gas 
zones, a 3 m gas zone at 1.16s, a 23 m gas zone at 1.234 s, and a 13 m gas 
zone at 1.332 s.  The synthetic gather  (Fig. 2) was generated using raytracing 
and the reflectivity is generated by the Zoeppritz equation.  The model was 
convolved with a 5/10-60/70 Hz zero-phase wavelet and noise was added to 
attain a 4:1 signal-to-noise ratio.    
 
Fig. 3 shows the result of a traditional AVO analysis performed on NMO 
corrected gathers.   Note the high level of noise on the S-impedance reflectivity.  
The fact that the S-impedance reflectivity is so noisy is a consequence of the 
random and theoretical noise introduced by the NMO stretch being amplified by 
the inversion process.  The fluid reflectivity has less uncertainty in comparison 
with the S-impedance reflectivity (Downton and Lines, 2001) and shows all 3 
anomalies.  However, there is still poor separation of the anomalies from the 
background noise particularly for the 3 m gas sand.   

Fig. 4 shows the filtered response of the new methodology.  For comparison 
sake it is shown with the same filter as the result in Fig. 3.  Note the better S/N 
ratio for both the S-impedance reflectivity and the fluid stack.  This is a result of 
several factors. Firstly, the sparseness constraint reduces the condition number 
of the Hessian in equation (4). Since the inverse of the Hessian is the parameter 
uncertainty covariance matrix the resulting estimates are more reliable.  
Secondly, small eigenvalues are excluded by limiting the number of internal 
iterations  in each conjugate gradient loop, again decreasing the condition 
number of the Hessian and increasing the stability of the estimate.    

Fig. 5 shows the unfiltered reflectivity estimates.  Note the excellent 
correspondence between the zero offset reflectivity (red) and estimated 
reflectivity (blue).  All three anomalous zones show up on the fluid stack including 
the 3 m gas sand.  The estimated reflectivity is sparse and full spectrum.  This 
result was achieved after 5 external iterations.  
 
Conclusions 
 
The method shown is an extension of poststack sparse spike deconvolution such 
as presented in Sacchi (1999) or Trad (2002).  Comparing this implementation to 
the poststack implementation, this method has the advantage that the 
regularization parameter in Equation (4) can be estimated as part of the inversion 
since the variance of the noise can be estimated from the prestack data.  This is 
not the case for the poststack implementation thus simplifying the 
implementation.  Further by working with prestack data, estimates for both the P- 



and S-impedance reflectivity are possible whereas the poststack case only 
estimates the P-impedance reflectivity. 
 
The results of this approach are superior to that of the traditional approach of first 
applying NMO and then doing an AVO analysis.   In the synthetic example, the 
new approach was able to more clearly resolve a 3 m gas sand in a layer with a 
4000 m/sec velocity and a high cut frequency of 60/70 Hz.  Further, the 
reflectivity estimates of the new method are more reliable than the traditional 
approach.    This is due to the classic trade-off between resolution and reliability.  
In this case, the improvement in reliability comes at the loss of apparent vertical 
resolution.  Only a sparse reflectivity series is estimated rather than an estimate 
at every time sample as done by the traditional approach.     
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Fig. 1: Velocity and density input to 
synthetic model.  

Fig. 2: Muted synthetic gather 
generated from input model in fig. 1 
with a signal-to-noise ratio of 4. 

 



  

Fig. 3: AVO inversion results based 
on traditional methodology of 
performing AVO on NMO corrected 
gathers.  Actual reflectivity is shown 
in red and estimate in blue.  The first 
column is P-impedance reflectivity, 
the second S-impedance reflectivity 
and the last the fluid stack 

Fig. 4: Filtered AVO inversion results 
based on new methodology.  Actual 
reflectivity is shown in red and estimate 
in blue.  The first column is P-
impedance reflectivity, the second S-
impedance reflectivity and the last 
the fluid stack. 

 
 

 
 

 
 

 
 

 
 

 



 

Fig. 5: Full spectrum AVO inversion 
results based on new methodology.  
Actual reflectivity is shown in red and 
estimate in blue.  The first column is 
P-impedance reflectivity, the second 
S-impedance reflectivity and the last 
the fluid stack. 


