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ABSTRACT 
A methodology of petrophysical reservoir characterization is presented. The goal 
of this methodology is to provide a complete solution for reservoir properties 
determination, including estimation and uncertainty analysis. The strengths of 
this reservoir characterization methodology are:  

         i) uncertainty analysis and  

         ii) integration of multiple geophysical data-sets, rock physics analysis 
and prior information in a straightforward way provided by the Bayesian 
framework.  

The inference problem reported on in this paper is formulated to solve the 
problem of porosity estimation. The sources of information are pre-stack seismic 
data, well log data and core samples. The waveform elastic pre-stack inversion is 
incorporated in this methodology to access the porous medium physical property 
information from pre-stack seismic data. Geostatistical modeling is incorporated 
to access the porous medium spatial variability information from well-log data. 

The methodology is implemented considering a reservoir composed of block 
cells. One posterior pdf is computed for each reservoir cell. Two cell volumes 
contain the final result. One is constructed with the modes of the posterior pdfs 
related to each cell and represents the estimated porosity model, and the other is 
constructed with the confidence interval of the posteriors pdfs and represents a 
measure of the related uncertainties. 

This paper is going to describe the general theory of the methodology, the 
practical implementation and results of tests with a 3-D pre-stack seismic data 
set (1995 3-D Blackfoot data).  

INTRODUCTION 
Despite the important decisions that are made after the reservoir 

quantification, the current reservoir characterization practices often fail to account 
for the uncertainties associated with each piece of information used in this 
process. Some uncertainty examples are related to: disturbances in the seismic 
data; data processing and inversion performed to obtain seismic attributes, the 



discrete earth model and the rock physics models relating attributes to 
petrophysical properties.  

Basically, the goal is to compute a marginal posterior distribution for the 
average porosity in each cell of the discrete reservoir model. In this case, we 
have divided the data information into two classes of data:  

   i -carrying information propagated from the well locations, 
which are the experimental variogram and    

   ii -one carrying information from the surface seismic data, 
which are the seismic attributes. 

The waveform seismic inversion is incorporated into this Bayesian formulation 
via an elastic Bayesian inference work from pre-stack seismic data. This step 
follows the work of Gouveia and Scales (1998). The result of this seismic elastic 
inference is a joint normal posterior pdf for the elastic parameters of a 1-D 
layered medium given an input seismic gather. A likelihood function for the 
seismic attributes that represents the beliefs about porosity after the knowledge 
of the pre-stack seismic data is constructed with the parameters of these 
posterior pdfs (i.e. the maximum a posteriori and the covariance matrix) together 
with rock physics models and petrophysic observations. 

To constructing a class of likelihood that carries information propagated from 
the well we define the experimental variogram as a data-set that carry the 
information regarding the spatial variability of porosity.  

Finally, the posterior pdf for porosity is the product of these two likelihoods and 
the prior pdf. This posterior pdf represents the beliefs about the cell porosity 
given the knowledge of the pre-stack seismic data, which carry the porous 
medium elastic information, and the knowledge of well-log data, which carry the 
porous medium spatial variability information. 

This text is going to describe the theoretical development and some tests. 

BAYESIAN FORMULATION 
Bayes Theorem 

Consider the reservoir model composed by a set of N block. The problem 
consists of making inferences about median porosity for each cell: φi, i=1,…N, 
using a set of data d and prior information I, which is any information obtained 
independently from the data. Following the Bayesian approach of inference the 
solution is given by the posterior distribution p(φ | d ,I). This function is the 
normalized product of the prior pdf and likelihood function; 



,I|r|l|p )()d()d( φφφ ∝
 (1) 

where )( I|r φ is the prior pdf, )( φ|l d  is the joint pdf for the data, also known 
as the likelihood function.  

In order to consider the posterior pdf as the solution of an inverse problem, the 
likelihood must be defined (i.e. the relation between the data d and the 
parameter φ exists and is known); and there are compatibilities between the prior 
understanding of the model and the final results, i.e. )( φ|l d >0 for some φ where 

)( I|r φ >0. Now it is necessary to define the likelihood function and the prior 
distribution to access the posterior distribution.  

Likelihood Function  

This work follows standard steps to construct the likelihood function, which is 
summarized by: i- selecting the datasets which carry information about φ; ii- 
finding mathematical expressions relating each type of porosity and Iii- defining 
statistical models (pdfs) for data distributions, based on data uncertainty. 

Following these three steps, let us define the data set. This methodology 
defines two types of independent data set: i- a data-set of density, p-wave and s-
wave velocity seismic attributes, represented by S ∈  R3N associated with the N 
cells of the reservoir model and ii- a dataset carrying information about the 
spatial variability of reservoir porosity, which is represented by v ∈  RL. v is a set 
of experimental porosity-porosity variogram values computed from well log data. 

Considering v and S as statistically independent datasets, the likelihood 
function should be expressed as the product of two independent distributions: 

   )(S)(v)S (v)d( φφφφ |l|l|l|l 21, == ;                          (2) 

Data v distribution )(v φ|l1 :  Assuming additive errors in the data v, it should be 
written as  

    ,)( 11 efv += φ                                                (3) 
where ei is a random variable representing a set of additive and independent 
errors. The error ei incorporates the uncertainties, which are associated with the 
porosity estimates in the well, the discrete earth model and the mathematical 
functions f1 that relates these data with porosity. The modeling operator f1 is the 
variogram function from geostatistics.  

Next step is to establish the criteria to select the probability density models for 
)(v φ|l1  data pdf. We chose to use the principle of maximum entropy to assign 

probabilities and assume that the first and second order moment information is 



sufficient to describe the errors. According to these choices, the )(v φ|l1  data pdf 
is normal and should be expressed as 
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and σ1
2 considered the unknown data error variance. This choice criterion to 

construct a likelihood pdf will be used as a standard criterion elsewhere in this 
work.  

Seismic attributes data distribution )(s φ|l2 : Let srho, sp and ss be a set of 
vectors representing density, p-wave and s-wave velocity seismic attributes 
respectively. These data vectors should be represented as the sum of a function 
of porosity, which are deterministic variables, and an error component, which is a 
probabilistic variable 
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The error ei, i=2,3,4 incorporate the uncertainties, which are associated with the 
process of data acquisition, data processing, the elastic inversion, the discrete 
earth model, and associated with the mathematical functions fi , i=1,2,3 that relate 
these data with porosity. 
 The next step is to define the relationships between data vectors and 
porosity, represented by the functions f1,f2 and f3. For density, we use  
                        );( mfm1f ρρφρ −+=                                  (7) 
where ρm is the matrix density and ρf  is the pore fluid density and are considered 
unknown parameters. For f2 and f3 the choice is the rock physics models studied 
by Han et al (1986). 
                                                    ;)( γφφ 2222 cbaf ++=                  (8) 

                                                    ;)( γφφ 3333 cbaf ++=     (9) 
where γ is the unknown clay content and  ai, bi and ci for i=1,2 are the unknown 
regression coefficients.  
 The set of equations (6), after the substituting equations (7), (8) and (9), 
should be treated as multi-regression model with auto-correlated errors (Zelner, 
1996). In rock physics and elsewhere we encounter sets of regression equations 
and it is often the case that the disturbances are correlated. It is important that 
non-independence of disturbances terms be taken into account in making 
inferences. If this is not done, inferences may be greatly affected.  



 The l2 pdf is defined as a normal distribution and the regression coefficients of 
the rock physics models and the matrix and fluid density are unknown. We made 
the choice to eliminate these unknown parameters of the Bayesian formulation 
by a marginalization process and to incorporate the information from laboratory 
petrophysical experiments following the Bayesian technique to predict a pdf 
for a new observation given an old observation. 

 Following this Bayesian technique, the predictive pdf for a vector of future 
observation s, which is assumed to be generated by the multiple regression 
process specified by the set of equations (6), is derived after the knowledge of an 
old set of observations S*, which is assumed to have the same statistical 
properties of s.  

For now, consider an available set of seismic attributes related to the reservoir 
cells and the associated covariance matrix Cs. Consider the existence of high 
resolution estimates of porosity and clay volume X*=[φ*

 γ*] in some position where 
core samples are available. Let’s consider S* = [srho

* sp
* ss

*] the seismic attributes 
estimated for the cells at these core sampled position. A multiple regression 
process with the set of equations (6) can generate the vector S*, where the 
regression coefficients and the matrix and fluid densities are unknown variables 
but the petrophysical properties porosity φ and clay content γ, which represent 
the control variables are known. The pdf for these unknown parameters 
(regression coefficients and matrix and fluid density), given the seismic attributes 
S* and the associated petrophyscial estimates X* should be represented by l2

+(ai, 
bi, ci, ρm, ρf| Cs, S*, X*), for i=1,2.  

Now, let’s consider a cell at some position of the reservoir space with the 
unknown porosity and clay volume x = [φ γ]. The joint pdf for the sesmic attributes 
s = [srho sp ss]  and the unknown ai, bi, ci ρm, and ρf (for i=1,2) associated with this 
cell given the knowledge of seismic attributes S* and the associates core samples 
petrophysical estimates X* is represented by l2(s, ai, bi, ci, ρm, ρf | Cs, S*,X*,x). 
This pdf should be decomposed as the product of two independent pdfs: 
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One way of deriving the predictive pdf is to write down the joint pdf l2(s, ai, bi, 
ci, ρm, ρf |S*,X,x), i=1,2 and marginalize (i.e. integrate) with respect to ai, bi, ci, ρm 
and ρf (for i=1,2) to obtain the marginal pdf for s, which is the predictive pdf. 

Prior distribution 

This work considers the definition of a non-data base prior distribution (NDBP) 
described by Jeffreys (1936) to access the prior distribution. A NDBP is derived 
from theoretical knowledge of the physical medium and from the investigator’s 
background experiences. Following the Bayesians’ most conservative practice to 



define the prior pdf, consider that with all previous available information, the only 
veritable statement is that porosity should fall between 0 and 1 interval. The use 
of a boxcar function is consistent with expressing this prior information. 

Posterior distribution 

With the Bayes Theorem applied, the posterior distribution should be 
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The regression coefficients and the matrix and fluid density are not the target 
of investigation. Petrophysical property inference and associated uncertainty is 
all that matters in this problem. These uninteresting parameters are eliminated by 
integration of the joint posterior. This procedure, which is known in statistics as 
marginalization of the joint distribution, is applied and the marginal posterior pdf 
is obtained:             
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All inference questions can be addressed to the posterior. For example, one 
can use the mean, median or mode as estimates for the interval porosity and the 
standard deviation or confidence intervals as measure of uncertainty. 

REAL DATA EXAMPLE 
The Blackfoot area was chosen for tests. The Blackfoot area is located 15 km 

southeast of Strathmore, Alberta, Canada. The target rocks are incised valley-fill 
sediments, which consists of the lower Cretaceous sandstone of Glauconitic 
Formation at the Blackfoot Field. In the Blackfoot area the Glauconitic sands 
thickness varies from 0 to over 35 m, at the depth of approximately 1,580 meters 
(between 1.0 s and 1.1). It is subdivided into three phases of valley incision. The 
lower and upper members are made of quartz sandstone, 0.18 porosity average, 
while the middle member consists of low porosity tight lithic sandstone.  

The seismic elastic inference: a full waveform inversion: The first step in this 
methodology is a seismic elastic inference, which provides an elastic model of 
the medium S and the associated covariance matrix Cs. This work follows the 
methodology presented by Gouveia and Scales (1998), which developed a 
Bayesian formulation for the pre-stack seismic inverse problem to estimate 
elastic velocities and density or elastic impedances. In their work, all 
uncertainties are described by normal distributions, but careful consideration is 
taken to construct the covariance matrices.  



This elastic inversion methodology considers a 1D reservoir with n-layers. The 
layers’ thicknesses do not vary during the inversion process. Elastic velocities (P 
and S-wave velocities) and densities from layers of a target interval are inverted 
from a seismic gather.  

According to the Bayes’ Theorem the general formulation of this seismic 
inverse problem, can be written as  

)|(SS)|(d)d(S IrlI,|p ∝ ,            (13) 

where )d(S I,|p  is the resulting posterior pdf for the seismic attributes and 
S)|(dl  and  )|(S Ir  are, respectively, the likelihood and the prior pdf. S 

represents the elastic attributes and d the pre-stack seismic data. 

In defining the probability models, one problem arises due to the non-linearity 
of the forward seismic problem d=g(s), where the g is the seismic modeling 
operator defined by the elastic reflectivity method (Muller, 1985). Even when the 
prior pdf and likelihood are Gaussian, the posterior pdf )d(S |p cannot be 
obtained in closed form.  

The standard solution is to first to obtain optimum estimates Ŝ , then a 
Gaussian approximation for )d(S |p  is constructed on the basis of the 
linearization of the forward problem around point Ŝ . When S)|(dl  and )|(S Ir  are 
both Gaussian, maximizing probability density is equivalent to minimizing the 
exponential argument of the Gaussian, leading to standard non-linear least 
square problem. The process of optimization by conjugate gradient used in 
Gouveia and Scales (1998), and adapted by the purpose of this work, can be 
summarized by the following expression: 

nn1n ηδ+=+ SS ,              (14) 

where nδ is the direction of the nth iteration step and η  is the step length. The 
gradient of the objective function is given by  

g(S))-(dG(s)CΘ 1
d
−=∇ ,              (15) 

where G(S) is the matrix of Frechét derivatives of the forward term g(s) and Cd is 
the data variance matrix. After completing the optimization process, the resulting 
Gaussian approximation for the seismic attributes around Ŝ  can be expressed by  
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where the covariance matrix is Cs=[GTCd
-1G]-1 which the Frechet derivatives 

evaluated at Ŝ . 



The vertical component of the 1995 Blackfoot 3D-3C data-set was selected for 
this example. A previous processing has followed with a pre-stack Kirchhoff Time 
Migration. The frequency range of the vertical component is from 20 hz to 115 hz 
and the bin interval is 30 x 30 m. The physical model consists of layers of 5 
meters thickness inside of the target interval. 

The inversion methodology was applied to each migrated image gather of a 
sub volume of this data-set. The Figure 1 shows a section of the elastic model 
obtained for the target interval. This section consists of result of the inversion 
performed on all image-gathers of cross-line 130. Figure 2 shows the position of 
this cross-line (red line) and well positions. 

 

Figure 1: Seismic attributes density, p-wave 
velocity and s-wave velocity, respectively 
the images from top, meddle and bottom. 

 

Figure 2: The base map of the area with the 
position of some well logs and the cross-line 
130 (red line). 

The petrophysical inference: The porosity inference is applied on the target 
interval along the cross-line represented by Figure 1.  

To compute l2 the clay content γ is considered an a priori known parameter. 
These parameters are estimated for the cells at inter well space using the clay 
content estimation from the gamma ray log and a variographic modeling. Then 
the posterior distribution for porosity, expressed by Equation (12), can be 
rewritten as )X,S ,Cs,v|( **

d, ,p *γγφ = . 

    The core samples data analysis from the wells 1608 and 0808 were used to 
construct the matrix X* and the elastic model obtained from the image gather 
adjacent of these wells to construct the matrix S*.   

Using a horizontal moving window, running across the reservoir section, a 
distribution l2 (Equation 10) is calculated for a cell in the centre position of each 
window (the data vector s is the seismic attributes from cells falling inside the 
window). The Fresnel Zone is considered for defining the dimension of the 
window. In the same way, l1 (Equation 4) is also computed for each cell position. 



Finally, both distributions are combined by the application of Equation (11) to 
yield one posterior pdf for each cell of the reservoir.  

Two volumes of the discretized reservoir represent the final results. One 
shows the mode of the posterior pdfs, representing the final estimated porosity 
model, and another shows the length of 0.95 posterior probability centered at the 
mode, representing the associated uncertainty model. 

Three different tests are performed using different amounts of information:  

 i – using only the variogram data v: 

              )()v|(),v|( I|r ,lI,p * φγγφφ =∝ 1  ;  

 ii – using only the seismic attribute data (s): 

              )(x),X,S ,C  (s),X,S ,Cs,|( **** I|r|,, , , ,lI ,p iii
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 iii - using both data types (v and s), i.e.        
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The Figure 3 shows the model estimated by the mode of these three tests 
respectively Figure 3a, b and c. On Figure 3a we can see that the model 
estimated by the variogram data has relatively high porosity values and shows us 
a smooth horizontal variation. On Figure 3b shows the channels with porosity 
varying between 0.10 and 0.2. The model showed on Figure 2c is similar that on 
Figure 2b.  

The Figure 4 shows the length of the centered interval having 0.95 
probabilities, corresponding to each one of the estimates in Figure 3. This gives a 
measure of the spread of the posterior pdf’ and the resolution for porosity of each 
cell of the reservoir. Figure 4a shows that the data v is more informative for cells 
on the right portion of the section (south). This portion has more wells than the 
left portion of the section (north, check the well positions on Figure 2). Figure 4b 
shows that the information about porosity contained in the seismic attributes is 
homogeneously distributed across the section. From Figure 4c we conclude that 
the main source of information comes from the seismic data. 

CONCLUSION 
The tests show reasonable porosity models obtained from the mode of the 

posterior pdfs. The associated uncertainty, represented by the length of 0.95 
probability intervals, consistently varies depending on the amount of information 
available. The variogram fitting procedure allowed describing the information 
about the porosity from the wells at inter-well locations. For the inversion of 
seismic attributes alone the level of uncertainty varies homogeneously across the 



model. When combining variogram and attribute data, we observe that the main 
source of information is the seismic data. 

 

Figure 3: FIG 12: Images of the reservoir 
section representing the modes of the 
posterior distributions for porosity by the use 
of variogram data (a), seismic attributes (b) 
and both datasets (c). 

 

Figure 4: FIG 13: Images of the reservoir 
section representing the length of the 0.95 
probability interval of the posterior 
distributions obtained from the inversion of 
variogran values (a), seismic attributes data 
(b) and both datasets (c).

ACKNOWLEDGEMENTS 
We wish to thanks the sponsors of CREWES, to CNPq; a Brasilian Federal 

Agency for scientific and technological development. We would like to thank 
Wence P. Gouveia and the members of CREWES, specially for Han-xing Lu for 
help with data processing and for the Professors Gary Margrave for helpful 
discussions. 

REFERENCES 
Gouveia, W. and Scales, J. A., 1998, Bayesian seismic waveform inversion: 

Parameter estimation and uncertainty analysis, J. Geophys. Res., 103, 2759-
2779. 

Jeffreys, H., 1936, Theory of Probability: Oxford University Press, London. 

Han, D. H., Nur, A. and Morgan, D., 1986, Effects of porosity and clay content 
in wave velocities in sandstones. Geophysics, 51, 2093 – 2107. 

Muller, G., 1985, The reflectivity method: a tutorial: Journal of Geophysics, 58, 
153-174. 

Zellner, A., 1996. An Introduction to Bayesian Inference to Econometrics, 
Willey Intercience. 

 


