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ABSTRACT 
Seismic anisotropy produced by shales and fine layering is a basic feature in 
sedimentary basin and occurs as slow propagation velocity in vertical direction 
and fast propagation velocity in horizontal direction. This kind of anisotropy may 
have significant influence on seismic modeling and imaging. In this work, the 
screen propagator in isotropic medium is extended to transversely isotropic 
medium with a vertically symmetric axis (VTI medium). An acoustic 
approximation for the quasi-P wave in VTI medium is assumed. However, the 
medium may be strong anisotropic. An explicit dispersion relation is derived. 
Generalized-screen approximation for lateral heterogeneities is adopted. An 
anisotropic screen propagator is developed and the influence of overburden 
anisotropy on migration is studied.  
 
Introduction 
 
A universal feature of depositional sequences is that they tend to be layering and 
have alternative impedance contrasts because of cyclic sea-level changes. The 
thickness of individual sedimentary layer within depositional sequences is usually 
much less than seismic wavelength. This kind of thinly layered structure is 
seismic anisotropy and can be described by transversely isotropic effective 
media (Backus, 1962). Furthermore, most shales are intrinsic anisotropies 
(Wang, 2002). The combination of the two kinds of anisotropic effects may 
produce strong seismic anisotropies. A seismic wave propagating through the 
media has slow propagation velocity in the vertical direction and fast propagation 
velocity in the horizontal direction. This is a basic seismic feature of the 
overburden in sedimentary basin and may have significant influence on seismic 
modeling and imaging.  
 
Speaking theoretically, all of migration methods are only suitable for weak 
heterogeneity. The use of effective properties can incorporate heterogeneity in 
anisotropy. The depositional sequences with strong impedance contrasts (or 
strong heterogeneity) may be seen as weak anisotropic heterogeneity. 
Therefore, the use of effective properties facilitates the analysis of overall 
response of heterogeneity and widens the using region of migration methods.  



Anisotropic screen propagator 
 
Fourier-based migration methods (Gazdag, 1978) apply a correction to the 
vertical wavenumber and do downward continuation with the goal of 
accommodating lateral velocity variations. There are various approximation 
methods to expand the vertical wavenumber for isotropic medium. For example, 
the phase screen propagator (Liu and Wu, 1994), the pseudoscreen propagator 
(Jin et. al. 1998; Huang et. al. 1999), and the wide-angle screen propagator (Wu, 
1994; 1996; Xie and Wu, 1999). For transversely isotropic medium, the scalar 
generalized screen (Le Rousseau and de Hoop, 2001a) and phase shift 
(Meadows and Abriel, 1994; Ferguson and Margrave, 2002) migrations are also 
developed. This work first derived an explicit dispersion relation for the 
transversely isotropic media. Then a generalized screen expansion for VTI 
medium with acoustic approximation is given. From this general formulation, the 
screen propagators for isotropic medium can be obtained when anisotropy 
disappears. Finally, the influence of the overburden anisotropy on migration is 
analysed. For simplicity, we will only discuss 2D case, but extend the result to 3D 
is straightforward. 
 
Velocity model 
 
A periodic layered medium can be replaced by a transversely isotropic effective 
medium when seismic wavelength is "long" enough compared to the spatial 
layering period.  The corresponding 5 elastic constants of the replacement medium 
are a   weighted averaging of the elastic constants of constituents (Backus, G. E., 
1962). The larger the differences of elastic properties of the constituents are, the 
stronger the anisotropies are. Thomsen (1986) introduces 5 independent elastic 
constants to characterize the strength of the anisotropy. These five parameters are 
the vertical P-wave velocity 0α , the vertical SV-wave velocity 0β , and three 
dimensionless parameters ε , δ , and γ . The parameter ε , which describes the 
difference between the horizontal and vertical P-wave velocities, is called as “P-
wave anisotropy”. The parameter γ , which describes the difference between SV-
wave velocity and SH-wave velocity, is called as “shear wave splitting parameter”, 
and the parameter δ  describes the difference between the P-wave and SV-wave 
anisotropies.  Although the original design of Thomsen parameters is for weak 
anisotropy, these 5 parameters are also convenient for arbitrary anisotropic 
medium.  

In sedimentary basin, shales (or clays) and fine layering are the main causes of 
seismic anisotropy. A seismic wave propagating through the medium has slow 
propagation velocity in the vertical direction ( ) and fast propagation velocity 
in the horizontal direction ( ). The changes of velocities are small for small 
incident angles ( ) and large for large incident angles ( ). 
This indicates that anisotropy produced by clays and fine layering can 
approximately be seen as isotropic medium for small incident angles or near 
offsets. The velocities on the surface are very low and the seismic reflections are 
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Anisotropic screen propagator 
usually large angle reflections for exploration geophysics. Therefore, the 
anisotropy will have important influence on seismic modeling and imaging for 
large incident angles or far offsets.  
 
Anisotropy screen propagators 
 
VTI medium The Christoffel equation for VTI medium (e.g., Auld, 1973) 
expressed by the Thomsen parameters can be derived as 
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Substituting 2222 )( xz k−= θαωk  into equation (1) and rearranging terms we have 
 

Ω++−−−=
2
1)1(

2
1]1)([ 2

0

2
0

2
0

2
2

2
0

2
02 m

α
β

β
ωδεδ

β
α

xz kk                                                   (2a) 

where 

42
2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
2
0

2
0

2
0

2
0

2
0

2
2

4
0

4

}
2
1

])(
2
1

1)[{(8

)]([4

x

x

k

kf

δ
α

β

α

β
δε

β

α
δδε

β

α

εδ
β

α
δ

α

β
ε

β

ω

β

ω

+−−++−+

−+−+=Ω

                                       (2b) 

 
Equation (2a) is the exact qP-wave and qSV-wave vertical wavenumbers 
expressed by horizontal wavenumbers for arbitrary transversely isotropic media.  
The minus sign in front of the square root is corresponding to qP-wave and plus 
sign qSV-wave. Equation (2a) is similar to equations (25) and (28) in ver der 
Baan and Kendall (2002) but in a different form. 
 
Acoustic approximation For acoustic case, 00 =β , equation (1) becomes 
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Substituting 2222 )( xz k−= θαωk  into equation (3) and rearranging terms we obtain the 
dispersion relation for acoustic approximation  
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Anisotropic screen propagator 
Equation (4) depends on three Thomsen parameters, 0α , ε , and δ  (Tsvankin, 
1996; Alkhalifah, 1998). Isotropy case can be obtained by taking Thomsen 
parameters ε  and δ  as zeros.   
 
Generalized screen expansion For inhomogeneous anisotropic medium, 
Thomsen parameters 0α , ε , and δ  are dependent on positions. For convenience 
we let α  denotes vertical inhomogeneous velocity and 0α  vertical background 
velocity. Assuming background medium with three Thomsen parameters 0α , 0ε , 
and , which are constants in the slab but may change from one slab to 
another. The Thomsen parameter perturbations will affect the vertical 
wavenumber. Thin-slab propagator can handle lateral heterogeneity. In 
sedimentary basin, the vertical velocity increases with depth and so the influence 
of vertical velocity perturbation on vertical wavenumber is large. However, the 
influence of 

0δ

ε  and δ  perturbations will be small because their changes are small 
within a thin-slab. This work will only consider the influence of vertical velocity 
perturbation and ignore the influence from Thomsen parameter ε  and 
δ perturbations. We introduce small vertical velocity perturbation and let  
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Substituting Eq. (5) into (4) and doing Taylor expansion we get generalized 
anisotropy screen expansion for the vertical velocity perturbation. 
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For equation (6), the zero order approximation is corresponding to phase-shift 
approximation, the first order approximation is corresponding to phase screen 
propagator, the high order approximations are corresponding to generalized 
screen. The corresponding isotropy may be obtained by taking 0ε = =0.  0δ
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Equation (8) is similar to equation (18) in Le Rousseau and de Hoop (2001b). 
 
Generalized screen propagator For a small vertical step z∆  and a smooth 
medium, the scalar generalized screen propagator becomes 
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We expand the perturbation term in terms of the vertical propagation, thus we 
have 
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Equations (6), (8), and (9) construct the basic formula for screen propagators. 
The phase-shift propagator, the scalar phase-screen propagator, and the scalar 
generalized screen propagator can be obtained by remaining different Taylor 
orders. 
 
Numerical tests  
 
In order to study the influence of overburden anisotropy, we consider an isotropic 
fault model overlain by a VTI medium with ε =0.3 and δ =0.2 (Fig. 1a).  Fig. 2b is 
the impulse response calculated by scalar anisotropic generalized-screen 
propagator. For comparison, the case for isotropic overburden is also shown in 
Figure 1c. It can be seen that overburden anisotropy causes flattened wavefront 
for large incident angles. This is because the propagation velocities are faster in 
oblique incidences than normal incidence. Usually, the thickness of overburden 
in sedimentary basin in thick and so overburden anisotropy may results in large 
position error in both horizontal and vertical directions. 
 
Conclusions and discussions 
 
This work extends the screen propagators in isotropic medium to transversely 
isotropic medium with a vertical symmetry axis (VTI medium). Scalar generalized 
screen expansion for vertical velocity in VTI medium is given to the fourth order. 
When two Thomsen anisotropic parameters become zeros the generalized 
screen expansion for VTI medium degrades to the case of isotropic medium. 
Numerical result shows that overburden anisotropy may results in large position 
error if the anisotropy is not considered 
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Fig. 1:  (a) A fault model with anisotropic 
overburden; (b) Impulse response for 
model (a); (c) Impulse response when the 
overburden in model (a) is isotropic.  

 


