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ABSTRACT 
 
Introduction 
 
The presence of anisotropy in the subsurface is a generally accepted but 
commonly overlooked concept in processing.  When it is addressed, usually only 
the effect on moveout is considered.  This paper shows the importance of 
including anisotropy in imaging, not only because it properly handles the long 
offset moveout but also because it correctly handles the focusing and spatial 
positioning which is subtler but may be even more important.  The paper shows 
an imaging problem from the coast of the Gulf of Mexico.  It is a problem 
involving fault related rollover structures that are common worldwide.  The 
fundamental aspects of anisotropy in imaging are introduced.  Then the impact of 
anisotropic prestack time migration on this example is shown along with a 
practical strategy for its implementation.  The impact is demonstrated using 
sections and time slices from the 3D survey comparing previous processing 
without anisotropy to new processing with anisotropy.  The anisotropic prestack 
time migration better focuses and images the complex growth fault structures 
and leads to significantly higher spatial resolution of the targets. With an initial 
estimate of anisotropy parameters from time imaging, the potential for further 
imaging improvements using prestack depth migration are also considered. 
 
Anistropic Prestack Time Imaging 
 
In prestack time imaging there are two forms of anisotropy.  The first is an 
effective anisotropy, which is the result of ray bending due to vertical variations in 
the interval velocity.  The second is the intrinsic anisotropy of the subsurface.  In 
this paper we consider only the case of vertical transverse isotropy (VTI). The 
following equation is a modified formula for the traveltime for each leg (source or 
receiver) of the double square root traveltime equation in the prestack time 
migration. 
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Here v  is the rms velocity (second moment of the interval velocity), v  is the 
fourth moment of the interval velocity, 

2 4

x  is the distance from image point to 



source or receiver and  is the one way image time.  The first two terms of this 
equation give the straight ray traveltime.  The third term is an approximation for 
the additional effect of ray bending on the traveltime.  The fourth term adds the 
effect of intrinsic anisotropy where

0t

η  is related to the RMS intrinsic anisotropy 
(Tsvankin and Thomsen, 1994).  The constant  in the fourth term can be 
either

C
η21+=C  or C (Grechka, 1998).  Either choice gives a similar result in 

the limit of small 
1=

η  since there is already a factor of η  in the numerator. The 
effective anisotropy, vη , from the ray bending is calculated from the velocity 
profile according to Taner and Koehler (1969).  It gives a well-defined 
contribution to the traveltime for the 4th order but adding a 4th order term to the 
straight ray expression results in an expression for the traveltime which diverges 
for large offsets.  Adding the C  in the denominator results in a rational 
approximation which modifies the 2

v
nd order term for large offsets.  Various 

choices can be made for C .  One can choose it so the 6v
th order term is 

preserved.  However, this also can result in a divergence in the traveltime for 
some velocity profiles.  Another choice is to use the same form as for the intrinsic 
anisotropy term.  This choice results in the effect of the ray bending anisotropy 
being prematurely damped at intermediate offsets.  A better choice, which is 
employed here, is to optimize C  such that it is stable and yields a good 
approximation to the 6

v
th order term and the ray-traced result.  Simply adding the 

ray bending anisotropy to the intrinsic anisotropy in the last term (or treating it as 
one effective anisotropy) is not correct since the two effects have different points 
where they make the transition from their small offset limits to their asymptotic 
limits. 
 
Growth Fault Example 
 
The problem of imaging dipping events and faults in growth fault structures in the 
Gulf of Mexico will be used to illustrate the importance of anisotropy in prestack 
imaging.  Figure 1 shows a section from a straight ray 3D prestack time migration 
of an extensional fault block.  There is significant rotation of the beds in the fault 
block while the events above and below are relatively flat.  The RMS migration 
velocities for the events above and below this fault block are in the range 9500-
9900 ft/s.  However, these velocities result in significant under-migration of the 
dipping events in the fault block.  The dipping events are imaged in a more 
correct location at a velocity of 10,900 ft/s, but such a velocity would result in 
degradation of the glide plane and the events immediately below the fault block.  
Analysis of the gathers shows anisotropy of about �=0.02 at 1.5 sec. but data 
quality and offset limitations prohibit such analysis below 2.0 sec.  This does not 
mean that anisotropy is non-existent below 2.0 sec.  It also does not mean that 
the imaging process is insensitive to anisotropy below 2.0 sec.  While the effects 
of anisotropy cannot be seen in the gathers (either pre-migration or post-
migration), anisotropy is still affecting the imaging of dipping reflectors even for 
small offsets. 



 
Fig. 1:  Prestack time migration using straight rays. 

 
Figure 2 shows the same section after 3D prestack time migration with a curved 
ray approximation as discussed above.  While it has sharpened some of the 
dipping events in the fault block, they are still significantly under-migrated.  The 
ray bending anisotropy at this level is only 015.0=vη which is significantly less 
than is needed to explain the apparent migration velocity differences between the 
flat and dipping events. 
 

 
Fig. 2:  Prestack time migration using curved rays. 



 
The intrinsic anisotropy parameter was then scanned for values between �=0.02 
and 0.10.  The value of 0.06 gave the 3D anisotropic curved ray prestack time 
migration shown in figure 3.  The VTI assumption made in the traveltime 
computations is considered applicable here since the anisotropy is generated by 
the gently dipping sand-shale sequences above the target.  The more steeply 
dipping events in the fault block are now migrated into the block optimally in the 
time domain while the events above and below remain well imaged.  In addition 
the fault plane is better imaged on the right side of the section both in terms of its 
position and its amplitude.  This improvement in fault plane imaging can be seen 
throughout the volume.  In the results shown in figures 1-3, the migration velocity 
was held fixed and was smoothly varying from 9,500 ft/s just above the fault 
block to 9,900 ft/s just below it.  A final anisotropic curved-ray prestack time 
migration was done using a single time varying � profile chosen based on the 
observed non-hyperbolic moveout in the shallow section and the results of the� 
imaging scans in the deeper section.  Thus, using anisotropic curved-ray 
prestack time migration, we were able to better image the events from dipping 
beds, subhorizontal strata and fault planes in and around the fault block with a 
very smooth velocity model and a smooth � profile Figure 4 shows a time slice 
through the 3D volumes of the straight ray and anisotropic curved ray prestack 
time migrations.  The time slice was made at 3300 ms. which cuts through the 
fault block.  The dramatic improvement in the spatial resolution of the anisotropic 
result comes from the improved imaging of the dipping events.  
 
Anisotropic Prestack Depth Migration 
 
Prestack depth migration is the natural extension to time domain imaging. In the 
previous section the distinction is made between effective anisotropy due to ray 
bending and intrinsic anisotropy as a rock property. The first two terms in eqn. 1 
approximate the travel time effect of a curved raypath through a V(z) gradient. In 
prestack depth migration, ray bending is handled directly by calculating travel 
times based on explicit ray tracing through a model representing a spatially 
varying interval velocity field. The intrinsic anisotropy term in eqn. 1 is an RMS 
type value applicable for the case of vertical transverse isotropy, or VTI. Although 
implementation of VTI anisotropy in the time migration has improved the imaging 
of dipping layers with the fault block, the gentle dip of the overlying anisotropic 
strata suggests that TTI or tilted anisotropy may produce even better results. 
Recent modeling by Vestrum (2002) has demonstrated that reflection point 
smearing due to anisotropy is surprisingly large at low tilt angles from the vertical 
of the symmetry axis. The extent to which the anisotropic imaging responds best 
to the VTI or TTI model will depend on whether the symmetry is controlled by 
fabric related to a vertical compaction gradient or bedding dip. The η=0.06 from 
the time migration may be used as an initial  estimate of the anisotropy 
parameters for depth model building, since under the weak anisotropic 
assumption, η ≈ ε − δ (Grechka, 1998). Models incorporating VTI and TTI 
assumptions are being tested using a new 3D anisotropic prestack depth 



migration developed for parallel computation of travel times and imaging using 
large scale PC clusters. Results comparing the VTI time domain imaging and VTI 
and TTI model-based prestack depth images will be discussed. 
 
Conclusions 
 
Including the effects of anisotropy in imaging is important not only because it 
properly handles the long offset moveout but also because it correctly handles 
focusing and spatial positioning.  The latter effect is frequently overlooked in 
anisotropy analysis.  The example of the rollover associated with deep 
extensional faults shows that anisotropy can be important and easy to include in 
prestack time imaging even when it is not manifested in the long offset moveout.  
The anisotropic prestack time migration better focuses and images the conflicting 
dip of complex growth fault structures in the time domain and leads to 
significantly higher spatial resolution of the targets, which also provides a fast 
and economic solution for anisotropic imaging. Anisotropic prestack depth 
migration is evaluated for further improvement of the focusing of the events and 
imaging of the complex fault systems in this example. 
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Fig. 3: Anisotropic prestack time migration using curved rays with η=0.06. 

 

  
Fig. 4: Comparison of time slices at 3300 ms of the final 3D prestack time 
migration using straight rays (left) and anisotropic curved rays (right).  The fault 
block shown in Figures 1-3 is in the middle of these time slices and the dashed 
line gives the location of the sections. 


