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ABSTRACT 
 
Summary 
 
Prospecting for reservoir zones in mature trends sometimes requires 
unconventional exploration tools.  AVO has been successfully used as a direct 
hydrocarbon indicator in clastic rocks.  Lately, AVO inversion for Lame 
parameters (λρ and µρ) has been shown to allow for enhanced identification of 
reservoir zones (Goodway et al, 1997).  However, the overwhelming volume of 
data produced in AVO inversion for these parameters can make meaningful and 
timely interpretation a challenge.  Interesting information from vertical or planar 
displays of these volumes singularly may not be forthcoming.  In such cases, the 
integration of different derived AVO attribute volumes with other derived seismic 
attribute volumes can provide geologically meaningful estimates.  This paper 
examines a case study wherein a probabilistic neural network solution was 
employed on AVO attributes derived from a 3D seismic survey acquired in 
southern Alberta, Canada.  This information was integrated with other derived 
seismic attributes to develop a more comprehensive interpretation (Pruden, 
2002). 
 
Introduction 
 
A 3D surface seismic survey was acquired over a producing Cretaceous-aged 
gas field in southern Alberta, with the twin objective of developing a stratigraphic 
model that would be consistent with the available well control and production 
history and also to identify locations in the area for unexploited hydrocarbon 
potential.  The field has been producing since the early 1980s and two of the 
earliest, most prolific producers have begun to water out.  Production is from a 
‘Glauconite’ fluvial channel  deposited within an incised valley system deposited 
during the Lower Cretaceous period 
 
As the interpretive objective was stratigraphic in nature, the seismic data was 
processed with the objective of preserving relative amplitude relationships in the 
offset domain to allow for the use of AVO attribute analysis.   
 



ime slice animation of the processed 3D migrated volume indicated the trend of 
he main valley cut in the northeast corner of the survey.  However, as is 
enerally the case, it was not adequate for identifying all of the channel sand 

eatures seen in the well control.  Coherence Cube was considered a good 
andidate for this purpose.  The data were datumed on an easily mapped Upper 
retaceous marker to remove the distortions of regional dip from time slices at 

he zone of interest.   Fig. 1(a) shows such a datumed time slice through the 
oherence volume at the level of the reservoir.  The definition of the main incised 
alley now seems quite clear. 

he complex trace envelope attribute is generally used for mapping lithology 
hanges.  A composite volume containing this attribute as well as the intact 
oherence coefficients, is shown in Fig.1(b).  High envelope amplitudes were 
een within the incised valley, though,  while these displays were quite revealing, 
hey do not provide information that can separate tight lithic sands from 
roductive Glauconite sands. 
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migrated 3D data and the resulting misties suggested the possibility of AVO 
effects due to lithology and pore fluid fill.  Synthetic seismogram ties were 
compared with near offset trace stacks of the seismic volume and the full offset 
stack.  Since the near trace stacks approximate a more normal incidence model, 
as assumed in the synthetic seismograms, the ties were superior.  It was 
determined that AVO inversions for Lamé rock parameters could provide 
additional insight into the geologic complexity. 
 
AVO inversion for Lamé rock parameters 
 
Reservoir properties can be appreciated better in terms of fundamental rock 
parameters such as incompressibility and rigidity.  Goodway et al, 1997 
suggested Lambda-Mu-Rho analysis to extract lithology and pore fluid 
information from seismic and well log data.  The basic theory for this analysis has 
been given in Burianyk,2000, Goodway, 2001, Ma, 2001 and Dufour et al 2002. 
 
P-wave and S-wave impedance reflectivity responses were estimated by solving 
the Fatti simplification of the Zoeppritz equations (Fatti et al, 1994). 
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The Vp/Vs ratio for the data was estimated from dipole sonic log data proximal to 
the area of study. 
 
Impedance reflectivities are related to Lamé parameters of incompressibility (λ) 
and rigidity (µ ) by the relationships  and =µρ 2

sI  where ρ is bulk 
density. 
 
The Lame parameters cannot be directly extracted without an estimation of the 
density parameter ρ. 
 
 
Inversion for geological parameters 
 
AVO inversion as described above yields several seismic attribute volumes 
which all contain fluid and lithological information: 



 
Density scaled compressibility 
 
Density scaled rigidity 
 
Derived normal incidence P-wave stack 
 
P impedance reflectivity 
 
S impedance reflectivity 
 
Fluid factor stack (Fatti et al, 1994) 

Figure 2: Segments of Lambda-Rho and Mu
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ne approach to be considered in 

 
O

the multivariate analysis of the 
derived seismic attributes involves 
examining the relationships between 
variables to see if common clusters 
or groupings can be formed that are 
particular to a given lithology or fluid 
fill.  Fig.2. shows a 2 dimensional 
example of this approach in which 
gas sands tend to separate 
themselves in Lambda-Rho, Mu-Rho 
crossplot space.  This approach 
becomes less intuitive when more 
than three variables are considered 
simultaneously.  Humans cannot 
visualize n-dimensional crossplot 
space if n is greater than 4 (if color is 
used as a fourth dimensional separator Fig.3 :Lambda-Rho/Mu-Rho crossplot with 

multiattribute cluster classifications and 
posted values at wells within the study area 

), yet it is within this n > 4 space that  
clustering or separation of differing  
lithology and fluid fill may be most  
evident.   An example of the separation 
power of cluster analysis is shown in 
Fig.3.  In this example, the values for 
each of the 6 derived seismic attributes 
for each seismic trace within a window 
across the zone of interest have been 
subjected to a k-means cluster 
separation analysis, assuming that 4 
distinct classes exist within the dataset.  
As can be seen in the Fig. 3, while the 
natural crossplot of Lambda-Rho and 
Mu-Rho across the interval studied 
form an indistinct cloud of values, the 
cluster separation has divided the data 
into separate zones, based on the 
common relationships between 6 
variables, including the two posted in 
Fig. 3.  Fig.4 :A subset volume of the 3D study 

area that has been subjected to K-means 
cluster analysis.  Note that the analysis 
appears to reveal some lithological 
information, but the cluster have not yet 
been subjected to classification 
according to the well control. 

 
 
 
 
 
 



This type of unsupervised cluster separation analysis is often capable of creating 
useful character mappings of the data in 3D space by reducing a large number of 
attributes down to one (assigned cluster) that can be visualized on a map.    Fig.4 
is a small subset of the larger 3D that has had this analysis performed.  Different 
clusters tend to associate themselves with differing lithologies as defined in wells 
that sample this particular 3D space.  
 

This type of analysis has many 
inherent limitations:  First, the 
number of clusters must be 
selected by the user and the risk 
exists of underestimating or 
overestimating the number that 
adequately represent the data.  
Additionally, there is no guarantee 
that the derived clusters have 
anything to do with the lithology or 
fluid fill as we wish to map it; the 
results are uncalibrated and 
unquantified with respect to the 
well control.  Thirdly, if there is a 
wish to classify the data according 
to well control, there is no 
guarantee that the wells have 
exhaustively sampled the  Fig.5 :Crossplot of API gamma ray 

values against acoustic impedance.  
Note the non-linear nature of the 
relationship. 

 
 
 
 
geological space, or that the existing well control is representative of the 
statistical variability of the lithology.  
 
A more deterministic approach that allows us to be able to quantitatively relate 
the measured seismic attributes to a lithological or fluid indicator would be 
preferable.  Given the well sampling within the study area and the existence of 
gamma ray curves for every well, it would be desirable to find a relationship 
between the gamma ray data and the derived attributes from seismic data.  
Gamma ray curves are a robust indicator of clastic rock types, used universally to 
separate shales from sands in log analysis.    A simple analysis of the 
relationship of gamma ray values to acoustic impedance (Fig. 5) however 
suggests that while a general relationship between the two is visually apparent, it 
is clearly a nonlinear relationship.  Further analysis of the other attributes with the 
gamma ray curve produces similar results.  This leaves us with the conclusion 
that there is a possible deterministic multivariate relationship between the 
seismic attributes and gamma ray values that is nonlinear.    
 



Nonlinear multivariate determinant analysis between the derived multiple seismic 
attribute volumes and the measured gamma ray values at wells is a problem that 
is ideally suited for neural networks (Hampson, et. al.,2001).  By training a neural 
network with a statistically representative population of the targeted log 
responses and the multiple seismic attribute volumes available at each well, a 
nonlinear multiattribute transform can be computed to produce an inversion 
volume of the targeted log type. 
 

 
Fig. 6: Neural network inverted gamma ray response and computed porosity from 
inverted density response.  The time slice is the same as referenced in Fig.1.  
Note the distinct separation of sand from silt and shale not imaged in Figure 1.  
The density values have been masked out for gamma ray values representative 
of silt or shale, giving a relative porosity indicator for the sands. 
 
In the case of this study natural gamma ray,  sonic and bulk density log curves 
were available over the zone of interest for sixteen wells evaluated by the 3D 
seismic survey.  The procedure described by both Hampson et al 2001 and 
Leiphart and Hart 2001 was employed in this study to derive gamma ray and bulk 
density inversions across the 3D volume. 
 
 
Discussion of results 
 
Shown in Fig.6 is a time slice equivalent to Fig. 1 displaying the derived gamma 
ray inversion, scaled to API gamma units and density inversion converted to 
porosity using the standard linear density relationship (Schlumberger,  1989).  As 
is usually done, sand and silt filled channels are interpreted as having gamma 
values less than 50 API gamma units.  This cutoff value was used to mask out 
inverted density values for silts and shales.  A cursory glance at Fig.6 depicts 



three distinct sand bearing channels.  Thus, while the coherence time slice 
indicates the boundaries of the channels clearly, gamma ray inversion helps in 
interpreting major sand bodies with the channels. 
 
The incompressibility coefficient   
was determined by dividing the 
Lambda rho value by inverted 
bulk density.  The results are 
represented in Fig.7.  Properly 
color coded, it is expected to 
represent the fluid types in an 
intuitive manner – high values of 
incompressibility (such as brine)  
are coloured blue, with lower 
(more compressible) values 
coloured green, suggesting oil or 
red, suggesting gas. 
 
Analysis of the rigidity coefficient 
( Mu ) suggests that the sands 
observed within the longer, 
north-south trending sand body 
on the eastern half of the survey 
contains a different rock type 
than the sand bodies contained 
in the west half of the survey.  
These results are consistent with 
the observed production 
capabilities of the two gas wells 
that penetrate  the north-south  
channel. The geomorphology of  
this north-south channel indicates  

Fig.7 : Computed Lambda representing relative 
fluid incompressibility.  High values of 
incompressibility such as brine, are coloured 
blue, while low incompressibility is represented 
by red and suggest gas. 

that it was deposited in a different depositional cycle than were the other 
channels, providing for the potential opportunity for a different lithology to de 
deposited. 
 
Conclusions 
 
AVO inversion results for the estimation of Lame parameters were successfully 
integrated with other derived seismic attribute volumes using a probabilistic 
neural network.  The resulting outputs were conventionally understood volumes 
of log gamma ray values and bulk dentiy.  These geologically meaningful outputs 
contributed to the estimation of relative sand distribution, porosity and fluid 
content estimates.   
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