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Abstract 
 
Here we consider a North Sea study where our initial approach was to build the subsurface model using interpreted horizons as a 
guide to the velocity update. This is common practice in the North Sea, where the geology ‘lends itself’ to a layer-based model 
representation. In other words, we encourage preconceived bias, as we consider it to be a meaningful geological constraint on 
the solution. 
 
However, in this instance we had a thick chalk sequence, wherein the vertical compaction gradient changed subtlety, in a way not 
readily discernable from the seismic reflection data. As a consequence, imposing the explicit top and bottom chalk horizons, with 
an intervening vertical compaction gradient (of the form v(x,y,z) = vo(x,y) + k(x,y).z), lead to a misrepresentation of the 
subsurface. 
 
To address this issue, a gridded model building approach was also tried. This relied on dense continuous automatic picking of 
residual moveout in CRP gathers at each iteration, followed by gridded tomography, resulting in a smoothly varying velocity field 
which was able to reveal the underlying local changes within the chalk. 
 
 
Introduction 
 
Current practice in velocity model building usually resorts to one of two approaches: the layer-based and the gridded (Jones, 
2003a). The layer-based approach is typical of say a North Sea type environment, where sedimentary interfaces delimit changes 
in the velocity field. The gridded approach is adopted in environments such as found in the Gulf of Mexico, where the velocity 
regime is decoupled from the sedimentation, and is governed primarily by vertical compaction gradients (velocity increasing with 
depth), controlled by de-watering, with iso-velocity contours sub-paralleling the sea bed. 
 
In the example considered here, which is typical of many North Sea fields, we have a thick chalk sequence, with a vertical 
compaction gradient within the chalk. The nature of these compaction gradients can be quite complex, with many subdivisions that 
are not obviously manifest in terms of a clear seismic response.  Due to compaction within the chalk, we can move from a near 
constant velocity regime in the uppermost part of the chalk, to a steep compaction gradient regime, and then back to a constant 
(high) velocity region at the base of the chalk, where the chalk has been compressed as much as it can be by the overburden 
pressure.  
 
Two classes of error can occur in building a model for such chalk bodies:  
 
1. The internal layering in the chalk may not be sufficiently well represented in the layered model, due to the difficulty in picking a 
clear event when we have a change in compaction gradient rather than a sharp change in reflectivity 
 
2. Errors in the estimate of the values for the compaction gradient can manifest themselves as apparent anisotropy (Alkhalifa, 
1997; Jones, et al, 2003b) 
 
Both of these errors will result in sub-optimal imaging, including the lateral mispositioning of faults (Alkhalifa & Tsvankin, 1995; 
Hawkins, et al, 2001).. 
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North Sea Example 
 
The real data shown here comes from an area with a benign flat lying overburden. 
 
The initial model building was performed using iterative CRP scanning with a layered model incorporating the top and base chalk 
as the main velocity contrasts, with a single compaction gradient within the chalk (figure 1). 
 
Upon completion of the layered model building, a gridded update (Hardy, 2003) was employed to investigate detailed changes 
within the chalk. The gridded model is shown in figure 2. The portion outlined in the box, where we observe the greatest changes 
in the velocity model, is used for the detailed figures shown in figure 3. We see: 3a: the layered model, 3b: the gridded model, 3c: 
the preSDM from the layered model, 3d: the preSDM from the gridded update. 
 
We observe that the upper part of the chalk is better described by a near-constant velocity region, and that the strong gradient 
regime commences deeper within the chalk. Importantly, the vertical compaction gradient is not constant laterally across the chalk 
body: when building a layered model, it is usual to keep a constant gradient in a given layer, as we seldom have sufficient well 
control to justify lateral variation in layered models. In the region with gas leakage, where the faulted chalk thins, we observe the 
greatest impact of the gridded update. 
 
 
Discussion 
 
We will address strategies for building models for complex chalk geology, and contrast results for manual update in a layered 
model building scheme, with a dense auto-picking-driven gridded tomographic approach. The influence of anisotropy on 
gradients will also be addressed. 
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Figure 1, 3D layered model: a benign overburden over a complex chalk layer 

Layered Velocity Model 

 
 
Figure 2. The gridded tomographic model. The box highlights the segment used in fig.3. where greatest changes are seen 

Gridded Velocity Model
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Figure 3. a: the layered model, b: the gridded model, c: the preSDM from the layered model, d: the preSDM from the gridded 
model 
 

Comparison of Final Velocity Models

a) Layered Model b) Gridded Tomographic Model

 
Comparison of Final Depth Migrations

c) Layered Model d) Gridded Tomographic Model
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