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Summary

The decomposition and filtering of coherent noise is a longstanding problem in exploration seismology. Low velocity events (air wave,
surface waves or ground roll) tend to produce large energy signals that complicate the identification and enhancement of seismic
reflections. This problem can be alleviated by filtering the offending low velocity signals using, for instance, f - k filters. A major
inconvenient with f – k filters is that the signal (hyperbolas) and coherent noise (low velocity/linear event) may contain overlapping
spectral components. Therefore, the filtering process will produce unavoidable signal distortions. A strategy to avoid the
aforementioned problem entails the simultaneous modeling of the signal and noise components. An estimate of the coherent noise
(modeled noise) is subtracted from the original data to obtain an estimate of a clean signal rich in hyperbolic events.

In this paper we discuss the implementation of the hybrid Radon transform as a mean to simultaneously model coherent noise and
signal.

Introduction

The main step in noise attenuation is to transform the seismic data to a new domain where noise and signal can be easily separated.
Radon transforms have been used to focus events with linear, hyperbolic, and parabolic curvatures and they have been efficiently
applied for multiple suppresion, ground roll filtering, and data interpolation. Reflections are usually approximated by hyperbolas or
parabolas; whereas ground roll is considered a low velocity dispersive noise.

One way of modeling both signal and low velocity noise is to adopt a combined operator that contains both hyperbolic and linear
integration paths. This Radon transform was first introduced by Trad et. al (2001) and was denominated the Hybrid Radon Transform.

Theory

We assume that seismic data (in this case a shot gather) is composed of three components: (i) events with hyperbolic moveout hd  ,

(ii) low velocity linear events ld , and (iii) additive random noise n . The recorded signal can be modeled as follows

nddd lh ++=                                                                                                                                                                                     (1)

In addition, we will model the hyperbolic and linear components in the data via Radon transforms. In this case we can write:
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Where hL  and lL  define the Hyperbolic and Linear Radon Operators (Trad et. al, 2003), respectively. The Radon panels are

designated by hm  (Hyperbolic) and lm  (Linear).

At this time we would like to point out that rather than attempting to directly estimate the signal components hd  and ld , we will invert

their associated Radon panels hm  and lm . The system of equations we solve is given by:

nmLmLd llhh ++=                                                                                                                                                                          (3)
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The latter is written in compact form as follows:
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This is equivalent to solve a linear inverse problem of the form nLmd +=  , where now L  is an augmented Radon operator and
m is the combined vector of Linear and Hyperbolic Radon domain parameters. The problem is solved using the Bayesian framework
(Ulrych et al., 2001). In this case we assume that both observational errors and model space parameters are normally distributed with
known data and model covariance matrices (the covariance matrices are bootstrapped from the data, see for instance, Trad et al.,
2003). The Radon panels can be estimated by minimizing the following  cost function:
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Minimizing the last equation with respect to the unknown vector of parameters leads to
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The following mathematical identity (with B and A positive definite matrices)

( ) ( ) ALALLBLBLABL TTTT 1111 ---- +=+                                                                                                                                  (7)

permits to transform equation (6) into a form that resembles a minimum norm solution:
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Let us assume that the model covariance matrix can be written in the following general form
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where hhC  and llC  are the covariance matrices for the hyperbolic and linear Radon panels, respectively. Moreover, we consider the

particular case where we assume no correlation between the linear and hyperbolic Radon panels, and we set 0== hllh CC .

Under these assumptions, the solution given by equation (8) reduces to the following form:
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We can use expression (10) to find an estimator of the linear noise lll mLd ˆˆ =

( ) dCLCLLCLLCLd n
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The above problem is solved using conjugate gradients. In our algorithm we split the problem into parts. First we use the conjugate
gradients method to solve
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then, we use z to compute the estimator of ld ,
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The last expression is utilized to estimate the low velocity noise from the seismic gather. It is interesting to notice that the estimator
given in equation (11) can be interpreted as a generalized notch filter. In particular we define the following data space covariance
matrices:
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The estimator of the linear noise (equation (11)) becomes
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The last expression resembles the expression of a notch filter utilized to cancel random noise and one coherent signal component
(Soubaras, 1994). At this point it is important to notice that the computation of the covariance matrices of the signal in data space
(hyperbolic and linear events) is not an easy task. Approximations based on smoothing arguments can be used to define data
covariance matrices or equivalent model space weights. The procedure outlined above permits a more natural representation of the
signal covariance matrices in terms of the covariance of the signal in the transformed domain. The latter is a point to further study for
the simultaneous modeling of primaries and multiples and the subsequent adaptive subtraction of the estimated multiple model (Luo
et al., 2003).

Example

Figure 1 illustrates the Radon panels obtained with the Hybrid Radon Transform for a shot gather contaminated with low velocity
coherent noise. In general, the Radon panels do not need to be computed since we can always use a direct implementation of
equation (13). Figure 2a shows the original data. Figure 2b is the data predicted using simultaneously the Linear and Hyperbolic
components. The error panel is portrayed in Figure 2c. This is also an estimate of the incoherent noise component n in equation (1).
The reconstruction of the linear events (via expression (13)) is presented in Figure 2d. The filtered data, the original gather minus the
estimated low velocity noise, is portrayed in Figure 2e. In this example, the covariance matrices in model space where computed
using weights derived from an initial least squares solution as discussed in Trad et al. (2003).

Conclusions

We have described an algorithm to remove low velocity noise based on the hybrid Radon transform. We have also outlined a
procedure to compute data space covariance operators for both linear and hyperbolic events (equation (12)). The model covariance
matrix in the transformed domain can be easily computed as demonstrated by Tad et al. (2003). The proposed method can also be
extended for designing data covariance matrices for the simultaneous inversion of multiples and primaries (Luo, 2003).
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Figure 1. (a) Hyperbolic Radon Transform panel. (b) Linear Radon Transform panel.

Figure 2. (a) Original data. (b) Reconstructed data using the hyperbolic and linear Radon operators. (c) Reconstruction error. (d)
Model of linear events estimated by forward modeling the linear Radon panel. (e) Data after there removal of the linear noise
model.


