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Summary  

Kinematics and dynamics of seismic disturbance propagation are intimately linked, but for probing of fundamentals we may deal 
with one or the other separately. In this abstract and in the poster presentation I address two issues: (1) what are fundamentals re 
modeling the kinematics in heterogeneous isotropic and in homogeneous anisotropic medium segments separately, and also 
jointly as components within overall media; (2) re anisotropy I show that the dispersion relationship so central to the kinematics 
needs to be complemented by two additional constraints. From all this it manifests that along-energy-path disturbance propagation 
involves (long wavelength regime) Snell's law conforming paths with pathtime gradient detail different from front-normal slowness.   
       
Motivational issues  
Heterogeneity and anisotropy are pervasive in the earth, and phenomena stemming from these contribute to kinematics and dynamics 
detail in exploration geophysics probing and in seismology data. To what extent can we replicate such effects by composited medium 
models, i.e. in terms of combinations of segment models that each encapsulate the characteristics of concern, together with the 
spatial boundaries//segment interfaces within which they apply? The question so framed represents a problem//challenge in the realm 
of systems theory. A basic premise of systems theory pertaining to 'components//segments//phenomena in cascade configurations' is 
that accumulation variables relevant for the system overall and its model, must pertain also to components//segments//phenomena 
and their models, else how would we obtain the overall accumulations. A further basic premise is that continuity type phenomena or 
so-called through-variables be segment-internal consistent//continuous, also through-segment-boundaries//interfaces consistent as 
relevant for the pertaining phenomena, and to be also through-medium-total consistent. The component//segment characteristics must 
then be encapsulated as analytical representation models in terms of the applicable accumulation and continuity variables.  
Seismic propagation, from some disturbance source, through composited medium segments of diverse character (with models as 
appropriate), to disturbance intercepting sensors, is essentially well understood, but not easily well modeled. Crudely summarized: (1) 
within segments, the disturbance propagates as a tangible energy wavefront, with energy-path//ray-path direction changes influenced 
by pointwise local heterogeneity, with progressive energy density changes, attenuation, etc.; (2) at interfaces, fronts can have energy 
multi-furcations (reflection/transmission/refraction/mode-conversions, …), and direction discontinuities, thereby creating a suite of new 
fronts of significant or lesser energy content, which makes some of these fronts prominent, others insignificant; (3) at interfaces also, 
bounding segment medium attributes, together with 'into'- and 'away-from'-interface directions of the fronts, contract to 
reflection//transmission coefficients, these then being convolution-encapsulated in dynamics-propagation variable amplitudes//spectral 
detail in the wavefront variables; (4) at arrayed sensors (near interfaces) the medium-internal boundary transitions convert to event-
manifestions with pathtime-total_tags//sensor_location_tags, and with response signal amplitudes and response waveform detail 
(spectral content) from medium path total modulations, but presumably with dominance from a strong interface-event encapsulation. 
For a systems context  re kinematics, candidates for continuity phenomena//variables might be energy density flows and balances, but 
in ray theory valid situations obviously also ray direction unit vectors: they are continuous and Snell's law conformig re velocity fields 
within medium segments, and they admit discrete Snell's law consistent direction changes and multi-furcations at segment interfaces. 
Clearly pathtime and pathlength are appropriate accumulations for paths through segments and for medium in composite. These 
alone suffice only for encapsuling a constant velocity field within a homogeneous isotropic single-segment medium. There must be 
other significant accumulations if essential velocity field detail for heterogeneous segments is be captured, or if constant velocity 
segments are combined, etc., and further, if cumulative such effects are expected to surface from aggregation totals of the appropriate 
variables. I have shown previously that for media comprised of heterogeneous isotropic lossless segments, for probing signal spectral 
content and medium segment scales where Snell's law paths are credible, triplets of path-specific {pathtime, pathque, pathlength} 
accumulations do actually encapsulate essentials which shape the detail in event wavefronts. What we can discern from seismic data 
is event manifestations that stem from energy furcations at path transitions through significant interfaces, call them event 
encapsulations, at a-priori unknown locations and at unknown pathtimes accumulated up to encapsulation. Pathque will be defined 
below (new variable, verbalizes representation letter  q  and points to context, is better name than previous  qvel  in Vetter, 2001).  
Re kinematics, sensor data from partial intercept of wavefronts reveal only event manifestations and path-specific total pathtimes. 
Implicit, and linking to the observables, are geometic//spatial path detail and velocity field detail, interfaces, pointwise along-path 
direction and propagation speeds, progressive accumulation of variable totals, also implicitly the through-segment totals, among 
others. Through good understanding of the phenomena and with much effort we succeed to decipher some of the significant 
propagation detail, and to infer therefrom significant information about the medium probed.   
Use designation lAC  for  pathlength along a Snell's law conforming path between points A and C, the line integral accumulations of 
path infinitessimals;  next   tAC   for pathtime, the path-associated pointwise-slowness-weighted integrated length;  and also  qAC   for  
pathque, the path-associated pointwise-velocity-weighted integrated length. In a constant velocity medium it is the simple                   
product qAC = lAC v. The significance of these path-specific accumulation variables stems from their link to means of the associated 
path-specific slowness density (or occurrence frequency) and velocity density distributions, by relationships below (Vetter 2001):  
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 tAC / lAC  = mean of along-path slownes density distribution                             ( = path mean slowness  ) 
            lAC / tAC    = harmonic mean of along-path velocity density distribution    ( =  time average velocity  ) 
 qAC / l AC    =  mean of along-path velocity  density distribution                        ( =  path mean  velocity  ) 
( qAC / tAC  )1 / 2   =  geometric mean of (mean and harmonic mean)    of along-path velocity  density distribution        ( = pathRMS  velocity  )    
 
Pathtimes relevant to marker-events (e.g.  pertaining to a common shot reflection event front cone intercepted by an areal sensor 
group), can be discerned from probing data. Pathlengths and pathques are somewhat problematic, but if we can obtain somehow 
good estimates, these will be useful towards discerning certain particulars of the raypaths and medium segment interfaces, also of 
confidence bounds for their locations and orientations . Pathque encapsulates also the geometrical spreading essentials for segments 
and for segments cumulative along paths. Note that path-RMS velocity re along-path distributions differs from the parametric vRMS  
used in the Dix method for interval velocity estimation. Those parametric vRMS  are effectively some average of path-RMS velocities 
over an ensemble of usually small offset paths. Conversely, when we have discerned a parametric vRMS  for paths to a sensor group 
(line or areal) for some event-front  move-through,  that vRMS  with pathtimes tAC  gives  qAC-aprx =  vRMS 2tAC  approximations .  
As indicated earlier, certain propagation velocity//slowness detail along Snell's law paths in isotropic heterogeneous media is 
encapsulated in {tAC, qAC, lAC} variable triplets, and that detail encrypts into wavefront detail. The wavefront when intercepted by 
sensors yields 'moveout ', or for the  2D sensing context  'front movethrough' with path-specific directionnally sensed moveout velocity 
manifestation. All this is compelling motivation to ponder and explore whether there should not also be Snell's law paths and {t, q,, l } 
accumulations involved in disturbance propagation through anisotropic medium segments, for long wavelength regimes where we can 
deem anisotropy models to apply.  Is anisotropy not essentially just encapsulation somehow of small scale ordered heterogeneity?  
Frame this as a CONJECTURE: Snell's law compatible paths associated with, but distinct from, the energy paths exist for the long-
wavelenth-relevant homogeneous anisotropic medium representation models. If we discern the paths and along-path velocities, we 
can expect to discern also pathlength and pathque accumulations. With such understanding analytically encapsulated, we would have 
a sound basis for conjoining segment models for the different attributes. We could be confident that the medium overal kinematics are 
appropriately modeled and, when wavefront movethrough can be discerned, that the attendant moveout velocities do link to path-
RMS velocities re the velocity//slowness distributions. There is more which is particularly relevant to  from-data-to-model  inversing.  
But what about our understanding that Snell's law paths are exact only for infinitely short wavelength (c.f. Helbig 1994,p6),  
presumably precluding therefore the codicil of relevance for propagation phenomena in real anisotropic media? This is a concern to 
ponder, but it need not compel us to abandon exploring the conjecture. The argument can be made that, for ideal anisotropy in the 
sense that the scale of local structure in the medium segment goes to the infinitessimal, even the very high frequency spectral 
components of a disturbance translate to the long wavelength regime. If we can clarify the issue for this 'scale-extremum', then we can 
expect relevance of the concept also for propagation of real disturbances in real anisotropic medium segments, subject to the long 
wavelenth regime condition, viz. that wavelength/scale ratio is sufficiently large, 10 or greater generally deemed sufficient. The issue 
of wavelengths and ordered structure scale is indeed very important (Helbig 1974, Thomsen 2002, many others) .      
The Snell's law paths  
Pierre de Fermat (1657) has pronounced his perceptive insights that "the path of a ray of light between two points is that particular 
one which minimizes the traveltime". Fermat's principle broader applicability encompasses a statement like "between a shot and a 
sensor, a seismic disturbance progresses along traveltime minimizing paths (spectral components specific)  " . Can we then doubt that 
wavefronts evolve as they must, or here for homogeneous (lossless, infinitessimal scale) anisotropic medium relevance, that the 
straight-line-idealized energy paths are the pathtime minimizing energy paths? Of course not! Nor have we reason to doubt, however, 
that parameters for wavefront-normal direction and wavefront-normal velocity magnitude, associated with the energy paths, have 
values that honour the pathtime minimizing conditions. Can we get more transparency on the link between front-normal directed 
velocity and energy path velocity? And is the path of energy propagation in seismics the analog of  the path of a ray of light ? 
For each or the propagation modes, front-normal velocity magnitude, by virtue of the Kelvin-Christoffel matrix and the familiar 
dispersion relationship, beyond dependence on medium density and elastic parameters, is functionally dependent on the relevant 
front-normal direction parameters. Deem observation coordinate frame coincident with anisotropy-natural frame, and visualize a shock 
front commencing from the origin. Whether we search for Snell's law paths or not, every particular energy path has associated front-
normal angle parameters { φθ , } with values consistent with pathtime minimizing conditions re these parameters. Analytical 
expressions for these conditions will encapsulate relevant constraints. The motivation and reasoning outlined leads us to novel 
compact relationships that link energy path vector velocity vE to front-normal velocity magnitude vN plus its derivatives wrt the front-
normal direction angles.  A concise vector form, in particular, is very transparent and  facilitates visualization (Appendix).  
Still, how can we reconcile pathtime acccumulation and pathtime gradient (deemed to be front-normal slowness vector) with along-
path conceptual direction-preserving jump-discontinuities of the gradient incrementals? Rather, might pathtime gradient not have 
medium-internal along-path continuity with direction and slowness-magnitude discontinuities? How to clarify the issue (Vetter 
1993,1999a 1999b)?  Represent pathtime as an along-path line-integral accumulation of pointwise pathtime gradient. Next,  examine 
all path directions with their velocities that accord with the front-normal slowness components in all possible combinations. Do this by 
integrating over path incrementals, then later shrink these to infinitesimals. Front-normal direction manifests as feasible, but so do all 
directions in medium-natural coordinate planes where just two of the front-normal slowness components participate, and along 
coordinate axes where just one of them participates. Seven possible combinations of front-normal slowness components, seven 
categorical directions (unit vectors) with their categorical velocities. The expressions are combinations of front-normal velocity 
magnirtude and directions, VPATH-SEGS = fn {vN , φθ , } (Appendix); they  do not therefore conflict  with dispersion relationship dictates. 
And with all the above discerned it is not difficult to put the pieces together. Aiming to visualize the pathtime gradient detail and to  
determine pathtime-, pathlength-, and pathque totals within medium segments, I aggregate infinitesimal same-direction incrementals; 
the result is three-segment gradient representation models (or two-, or only one- when front-normal and energy path direction 
coincide). There are six  3D-anisotropy path categories (Appendix), also special cases for 2D-polar-anisotropy. Applicability depends 
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on the conjunction of front-normal and the energy path velocities with their directions. Visualizing shot and energy front arrival points 
as diagonally opposite corners of a rectanguloid box, the gradient representation path is along the front-normal, then in a plane, and 
lastly along an edge of the box. Direction changes between the segments are Snell's law conformiing; we can visualize them re the 
'box' as akin to body wave modes with at-interface headwave refractions into and from adjacent velocity regimes. Conjoined gradient 
directions are therefore rays in the postulated sense of ray theory and Fermat's principle. And clearly also, the energy propagation 
paths are not the analogs of  the paths of a ray of light.  And the  so-called rays along energy path directions are not-rays.  
Conclusions 

Re kinematics in complex media broadly, I have pointed out that explicit//implicit {pathtime, pathque, pathlength} accumulations are 
essential for linking event-wavefront detail to by-path-traversed velocity field detail. Among others, along-path-vRMS manifests as an 
encapsulation within the variable triplet. Re anisotropy kinematics, the analytical relationships detailed 'explain' the puzzling 
complexities of velocities and wavefronts. Long wavelength regime kinematics are ray-theory consistent and tractable. This has 
implications, viz. for kinematics broadly incl. geometrical spreading, for raypath tracing through composited media, potentially also 
for inversing discerned kinematics phenomena to confident estimates of geometrical and medium parametric detail, and more .   
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Appendix: principal analytical relationships  
Readers will have some understanding of elasticity concepts that lead to encapsulation of elastic parameters with the propagation front-normal 
unit direction vectors, pertaining to propagation of a plane-wave composited disturbance from-point-shot  to energy front points, and to the path-
specific energy-path-linked 3x3-Kelvin-Christoffel matrix )Γ zyxji nnnc ,,,( . The eigenvalues of )Γ ...( are elasticity moduli  M = ρ( vN m)2,  
(index m = qP, qSV, qSH),  that encapsulate mode-distinct front-normal velocities associated with the energy paths, and eigenvectors are 
polarization directions of the respective vibratory modes (Auld 1973, Helbig 1994, Mensch..1997, Thomsen 2002, others). For context here we 
need to use the familiar cubic polynominal expression for mode-relevant elasticity moduli  M = ρ(vN m)2 in terms of  elastic parameter-, plus 
density-, plus front-normal direction unit-vector components explicitly ; likewise mode-relevant front-normal velocities in terms of  . . . explicitly; 
all this because we need to compute values for  vN -derivative expressions re angle direction parameters {theta , phi }.  
 
Equation (1), credited to Rudzki (1911; c.f.  Helbig 1994 p.6), encapsulates the time-progressive wavefront from a long wavelength regime point 
disturbance at origin of medium-natural//observation coordinate frame to energy front points {x, y, z}. Front-normal velocity magnitude vN m 
depends on medium parameters and front-normal direction. Equation (1) yields pathtime minimum constraint conditions (2) and (3). By 
rearrangement of those three equations we obtain relationships (4) and then matrix inversed equivalent thereto, relationships (5). Summing 
squares of the left-hand side energy path velocity vector components in (5) yields the Pythagoras theorem revealing relationship (6).   
 
The relational detail in (5) compacts to the simple and profoundly transparent vector equation (7). It reveals that and how directional derivatives 
of vN (cij , theta, phi ) contribute to composited energy path velocity magnitude and direction. We can encapsulate these details on front-normal 
velocity surface plots: plot three velocity dimensioned surfaces for front-normal directions, {vN , vN+dvN/dtheta, vN+(dvN/dphi)/sintheta }; the 
derivative terms {+/-}information hugs the velocity surface. With { 1N

r
, θ1
r

, 1φ
r

} implicit through front-normal directions, we can visualize (or 
locate computationally) linked energy front vector velocity as encapsulated in equations (5, 6, 7). Front-normal three-surface representations are 
visually informative and also 'quantitative indicators' of the directional severity of anisotropy of a given medium ( inspect equations (6) and (7)! ). 
 
Re Snell's law representation paths, expressions for path vector, segmented pathlength and pathque, parallel those shown for case (1), eqn(8).   
 
t vN =  x sinθ cosφ + y sinθ sinφ  + z cosθ                                                     (1 )  
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Long wavelength regime 3D Snell's law representation paths (direction/velocity cosistent infinitessimals aggregated )  
unit ve tors:c   {1x , 1y , 1z } observation coordinate frame aligned with anisotropy structure-natural (or crystal-natural) frame;      
1N  =  = (sinθ cosφ )nr  1x + (sinθ sinφ )1y + (cosθ )1z     VN = vN                               ( in 3D general directions ) 
  1Z = (cosφ ) 1x + (sinφ )1y      VZ = vN/ sinθ   ( in planes  z = constant ) 
    1X = ( (tanθ sinφ )1y + 1z )/(1 + tan2θ sin2φ )1/2  VX = vN / cosθ (1 + tan2θ sin2φ )1/2 ( in planes  x = constant ) 
      1Y = ( (tanθ cosφ )1x + 1z )/(1 + tan2θ cos2φ )1/2

     VY =  vN /cosθ (1 + tan2θ cos2φ )1/2 ( in planes  y = constant ) 
        1x       Vx = vN/ sinθ cosφ   ( along  1x  directions ) 
 1y       Vy = vN/ sinθ sinφ   ( along  1y  directions ) 
    1z      Vz = vN /cosθ    ( along  1z  directions ) 
 
(1)  NZx :  (xN < xE ,  yN > yE ,  zN > zE) ;   yE  >  zE sinφ tanθ  ;   xE  >  yE /tanφ                                                                  (8a) 
 rAC  =  lNZ x  =  (zE /cosθ 1N          +  (yE /sinφ  -  zE tanθ )1Z               +  (xE  -  yE /tanφ )1x                  (8b) 
 
lAC  =  lNZ x  =  (zE /cosθ )                  +  (FE /sinφ  -  zE tanθ )                   +  (xE  -  yE /tanφ )                   (8c) 

tAC  =  tNZ x  =  (zE /cosθ )//( vN )  +  (yE /sinφ  -  zE tanθ )//(vN/ sinθ ) +  (xE  -  yE /tanφ )//(vN / sinθ cosφ )                               (8d) 

qAC  = qNZ x  =  (zE /cosθ )*( vN )  +  (yE /sinφ  -  zE tanθ )*(vN/ sinθ ) +  (xE  -  yE /tanφ )*(vN / sinθ cosφ )    (8e) 

 
 
(2)  NZy :  (x  > x  ,  y  < yE ,  z  > z ) ;   x > z  tanθ cosφ ;   y  > x  tanφ                                           (9a) N E N N E E   E  E E
tAC  =  tNZ y  =  (zE /cosθ )//( vN )  +  (xE/cosφ  -  zE tanθ )//(vN / sinθ ) +  (yE  -  xE tanφ )//(vN/ sinθ sinφ )                  (9d) 

 
(3)  NXy :  (xN > xE ,  yN < yE ,  zN > zE) ;   zE tanθ cosφ >  xE  ; yE >  zE tanθ sinφ                                                         (10a)           
t  =  t   =  (x  /sinθ cosφ  )//( v ) +   (z   -  x  /tanθ cosφ )(1 + tan2θ sin2φ )1/2//(v / cosθ (1 + tan2θ sin2φ )1/2 )   AC NX y E  N   E E N 
                                                                 +  (yE  -  zE tanθ sinφ )//(vN/ sinθ sinφ )     (10d) 

 
(4)   NXz :  (xN > xE ,  yN > yE ,  zN < zE ) ;    yE  > xE tanφ  ;  zE tanθ sinφ  >  yE             (11a)   
tAC  =  tNX z  =  (xE /sinθ cosφ  )//( vN )   

   +  ( (yF / tanθ sinφ  -  xE / tanθ cosφ )(1 + tan2θ sin2φ )1/2 )//( vN /cosθ (1 + tan2θ sin2φ )1/2 )   (11d) 
                                                                   +  (zE  - yE/ tanθ sinφ )//(vN /cosθ  )      
 
 
(5)   NYx :  (xN < xE ,  yN > yE ,  zN > zE) ;   zE tanθ sinφ  > yE ;  xE  >  zE tanθ cosφ    (12a) 
 tAC  =  tNY x  =  ( yE /sinθ sinφ )//( vN ) + ( (zE  -  yE /tanθ sinφ )(1 +  cos2φ tan2θ )1/2 )//( vN /cosθ (1 + tan2θ cos2φ )1/2 ) 
                                                               +  (xE  -  zE tanθ cosφ )//( vN /sinθ cosφ )     (12d) 
 
 
(6)   NYz :  (xN > xE ,  yN > yE ,  zN < zE) ;   xE tanφ  > yE  ;  zE tanθ cosφ  >  xE      (13a) 
 tAC  =  tNY x  =  ( yE /sinθ sinφ )//( vN )  
                               +  ( (xE/cosφ tanθ  -  yE /sinφ tanθ )(1 + cos2φ tan2θ )1/2 )//( vN /cosθ (1 + tan2θ cos2φ )1/2     (13d) 
                                                                        +  (zE  -  xE/tanθ cosφ )//( vN /cosθ ) 
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