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Summary 
We propose a methodology to propagate uncertainties in seismic pore pressure prediction using a 3-D Probabilistic Mechanical Earth Model 
(P-MEM). An extended form of Bowers formula is used to link pore pressure to seismic velocity, overburden stress, porosity and clay volume. 
Probability Distribution Functions (PDFs) for all input variables are stored as attributes in the 3-D MEM. An output PDF for pore pressure is 
then calculated point by point in the 3-D model, using either a linearized Gaussian approximation or a sequential stochastic simulation 
approach that fully accounts for nonlinearities in the velocity to pore pressure transform and spatial correlation between the different input 
variables. The linearized and stochastic approaches are compared in the context of a seismic pore pressure prediction study involving 
overpressured reservoir sands. 

Introduction 
Accurate knowledge of pore pressure is a key requirement for safe well planning in overpressured formations. Pre-drill pore pressure predictions 
are often obtained from seismic velocities, using an empirical velocity to pore pressure transform. Seismic-based pore pressure calculations are 
best done with the help of a 3-D Mechanical Earth Model (MEM), as illustrated by Plumb et al. (2000). This subsurface model couples the 3-D 
seismic data with a numerical representation of the state of stress, the lithology, porosity, fluid content and mechanical properties of the rock 
strata penetrated during the drilling process. In the context of a MEM, the velocity to pore pressure transform is frequently applied in a 
deterministic manner with no uncertainty quantification. This means that expensive drilling decisions are often done without adequate risk 
assessment. 
 
Here we propose a methodology to propagate uncertainties in pore pressure prediction workflows using a probabilistic MEM. At each point in 
the 3-D model, we store PDFs for all input parameters and rock properties required in the velocity to pore pressure transform. Given PDFs on 
the input attributes, we calculate an output PDF for pore pressure at each location, using either a linearized approximation or a stochastic 
simulation approach. The probabilistic MEM may be used to assess drilling risks by calculating for example the probability that pore pressure 
exceeds some critical level above which drilling becomes too risky. 
 
Methodology 
Following Sayers et al. (2003), we start from an expression linking P-wave velocity, V, to pore pressure, P, overburden pressure, S, porosity, φ, 
and clay content C: 
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where the coefficients ai have been obtained by well calibration. This relation between effective pressure, S – P, and velocity is equivalent to the 
model proposed by Bowers (1995) with the zero-stress velocity Vo set to a1 – a2 φ–a3C in order to account for variations in porosity and 
lithology. We can invert this equation to obtain an expression for the pore pressure: 
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Equation (2) may be applied point-by-point in a 3-D MEM, assuming that a velocity cube has been obtained by seismic inversion and that 
porosity and clay content have been interpolated from well data. In practice, the velocity to pore pressure transform must be calibrated for each 
formation and fluid type. The overburden pressure, S, required in the calculation of P can be obtained from: 

S (z)= g ∫ ρ(u) du                                                              (3) 
z

0

where z is the vertical depth and ρ is the density of the fluid saturated rock. In practice, the integral is calculated from a density cube obtained by 
log interpolation. 
 
Our goal is to quantify uncertainty in pore pressure prediction given uncertainties in the variables on the right-hand side of equation (2). To start, 
collect all the uncertain variables in a vector x: 

[ ] [ 9154321 ... xxVSCaaaaax =φ= ]                   (4) 
 
and assume that the uncertain variables xi, i = 1, …, 9, are each characterized by a Gaussian PDF with mean and variance var[xix̂ i]. We then 
rewrite equation (2) generically by expressing the pore pressure P as a function g of the uncertain parameter vector x; i.e., P = g(x). Given 
Gaussian PDFs for the input variables xi, we want to calculate an output PDF for P, which is a specified function of the input variables.  
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Linearized Approximation. In general, the output PDF for P will not be Gaussian because the function g linking pressure to velocity (equation 2) 
is nonlinear. However, the output PDF can be approximated by a Gaussian distribution via linearization. Consider a Taylor series expansion of g 
around the mean point , keeping only the first order terms to define Px̂ est as a linear function of the uncertain input variables: 
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It is easy to demonstrate (Granger, Morgan and Henrion, 1990) that Pest has a Gaussian distribution with mean given by: 

)ˆ(ˆ xgPest =                                                                         (6) 
 
and variance equal to: 
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where the partial derivatives are evaluated at the mean vector . Equation (6) states that the first order estimate of the mean pore pressure is 
obtained by evaluating the function g at the mean value of each uncertain input variable. Equation (7) shows that a linear estimate of the 
variance of the pore pressure is obtained as a weighted sum of the variances and covariances of the input variables, with weights representing 
the sensitivity of the output to the different uncertain inputs. In general, the second term in equation (7) cannot be ignored for input variables 
such as velocity, porosity and clay content that are significantly correlated.  

x̂

 
We will apply equations (6) and (7) to calculate a best first order estimate of P and the uncertainty in this estimate. In practice, this calculation is 
performed point by point in the 3-D P-MEM, with a Gaussian PDF specified at each location for all uncertain input variables. Input PDFs for 
porosity, clay content, overburden pressure and seismic velocity are spatially variable, while PDFs for the uncertain coefficients ai are assumed 
to be spatially invariant. In what follows, we will denote the spatially variable mean of an input xi by , with u representing the coordinates 
of one point in the 3-D model. Similarly, the spatially variable standard deviation of x

)(ˆ uxi
i (square root of var[xi]) will be denoted by )(uiσ . The 

Gaussian PDFs for the input variables are therefore defined at each point as N[ , σ ] . In practice, the means and variances of some of 
the input distributions will be obtained by 3-D kriging, as shown in the example below. 
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Stochastic Simulation. The linearized method approximates the output PDF for P by a Gaussian distribution. In reality, even with Gaussian 
inputs, the output PDF may deviate from normality because the velocity to pore pressure transform (equation 2) is nonlinear. As we will see, 
statistics depending on the tails of the output PDFs, such as “exceedence” probabilities may be poorly estimated with a Gaussian model. To 
overcome this problem, a stochastic simulation approach was applied. The simulation procedure consists of the following steps: (1) draw values 
at random from the PDFs specified for the uncertain input variables, (2) evaluate the model function g for each realization of the random input 
vector x and (3) approximate the PDF of the output variable P from the histogram of the simulated model outcomes.  
 
In comparison to traditional Monte Carlo simulation, several additional aspects need to be considered in the context of a 3-D P-MEM. First, the 
input PDFs defined for the same variable at different points in the 3-D model may not be sampled independently. Instead, spatially correlated 
realizations must be generated for each input attribute. Following Samson et al. (1996), a 3-D simulation of a Gaussian input variable, i , is 
obtained by adding a spatially correlated Gaussian error field, 
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In (8), the normalized N(0,1) error field, εi, is scaled by the spatially variable standard deviation of the input variable xi. Fast simulations of the 
correlated error field are generated using the FFT-MA method (Le Ravalec et al., 2000).  
 
In addition to spatial correlation, a second important aspect of the simulation procedure is that local correlations between the different input 
variables must be reproduced. This is achieved by sequential simulation of the correlated attributes. For example, we first simulate velocity. 
Next, we simulate porosity conditional on the co-located simulated V value. Finally, we simulate the clay content input variable locally 
conditional on both previously simulated values of φ and C. A simple Bayesian updating rule (Doyen et al., 1996) is used to calculate the 
required conditional distributions. 
 
Example 
The concept of P-MEM was applied to estimate uncertainty in seismic pore pressure prediction for a deep and highly overpressured reservoir. 
Seismic velocities over the reservoir interval (Figure 1) have been estimated using reflection tomography. As shown by Sayers et al. (2003), 
significant lateral velocity variations are observed that relate to changes in effective stress as well as variations in clay content and porosity 
within the reservoir. Equation (2) was used to estimate pore pressure and associated uncertainty starting from Gaussian PDFs for all input 
variables specified in equation (4). Means and variances for the PDFs were stored at each cell of a 3-D corner point grid constructed over the 
reservoir layer. The inverted tomographic velocities define the mean velocity field while the variance field was estimated by assuming a 10% 
relative error, based on a comparison between seismic velocities and upscaled sonic logs at the wells.   
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Figure 1. Velocity distribution in the reservoir layer obtained by tomographic inversion. Velocities vary linearly with depth as             V(z) = V0 + k z ,  with a constant gradient 

  and laterally variable V0 . k 
 
Mean values for C and φ were determined in each cell of the model from 3-D kriging interpolation of log data at 21 wells. The corresponding 
variances were assigned from the predicted kriging errors. A density cube was constructed by kriging the log data. The input mean field for the 
overburden pressure, S, was then calculated by vertical integration of the kriged density cube. Approximate overburden pressure errors could be 
calculated by simply summing the density kriging errors and ignoring correlations between the errors. However, this procedure significantly 
underestimates the overburden pressure errors because kriging errors tend to be positively correlated. Instead, the variance field for S was 
calculated from multiple 3-D density simulations that were integrated to obtain an equivalent number of overburden pressure simulations. The 
variance of S was then calculated at each grid cell from the spread of simulated values. Values and associated uncertainties for the coefficients ai 
in equation (2) were estimated by well 
calibration. Correlation coefficients 
between V, C and φ were evaluated 
from cross plots of log data upscaled 
over the reservoir layer. 
 
Having established PDFs for all the 
uncertain input variables, pore 
pressure and uncertainty estimates 
were calculated using both the 
linearized approximation and the 
stochastic approach. The results are 
presented in Figure 2. Figure 2a 
shows an areal view of the P 
predictions at the top of the reservoir 
obtained using the linearized analysis; 
i.e., by setting all input variables to 
their mean values in equation (6). 
Figure 2b depicts the corresponding 
uncertainty map calculated from 
equation (7). For comparison, Figure 
2c and 2d show the mean pore 
pressure and standard deviation map 
calculated by averaging 500 stochastic 
simulations. As the simulation scheme 
fully accounts for nonlinearities in 
equation (2), it should produce more 
accurate predictions, especially for 
statistics impacted by the tails of the 
local PDFs, which are typically poorly 
reproduced by the Gaussian assumption m
methods are broadly similar with the no
pressure estimates and higher uncertainty
output PDFs that were calculated by the 
observed bias in the mean pressure calcu
presence of model nonlinearities. The ov
Gaussian distribution extend well beyond 
the stochastic simulation, which yields 
Predictions from the linearized method co
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Figure 2. Areal view of Top reservoir showing pore pressure (a) and uncertainty (b) predicted using 
linearized analysis. Corresponding results (c and d) obtained by stochastic simulation.  
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Figure 2. Areal view of Top reservoir showing pore pressure (a) and uncertainty (b) predicted using linearized
analysis. Corresponding results (c and d) obtained by stochastic simulation. 
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physical pressure limits. However, this correction would not attenuate the bias in the position of the mode of the Gaussian PDF, compared to the 
histogram of simulated values.  
 

 
  

Figure 4.  3-D display of predicted P within the reservoir with slice through 
calculated overburden pressure cube. Well planning with automatic 
extraction of pore pressure predictions and associated confidence margins 
may be used to calculate a safe mud weight window. 
by stochastic simulation.  
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Figure 3. Uncertainty in pore pressure from linearized 
analysis (thick black line) compared with a histogram of 
100,000 samples obtained by simulation, (thin black line). 
Best estimate from linearized analysis (i.e., mean / mode of 
Gaussian curve = 12,300 psi) is significantly lower than 
simulated mean (12,600 psi), indicating nonlinear effects. 
Standard deviation from linearized analysis (3,300 psi) is 
much greater than simulated value (2,400 psi) because the 
Gaussian tails extend well outside the physical limits 
corresponding to overburden and hydrostatic pressure 
conditions (grey vertical lines). 
 
clusions 
have investigated a methodology to propagate uncertainties in seismic pore pressure prediction using a probabilistic 3-D mechanical earth 
el. PDFs on all input variables such as seismic velocity, porosity, clay volume fraction and overburden pressure are stored as attributes in 
3-D model. An output PDF for pore pressure is then calculated at each point using either a linearized Gaussian calculation or a sequential 
hastic simulation approach. The linear scheme is fast and provides an analytical framework for sensitivity analysis by decomposing the pore 
sure uncertainty into the sum of the contributions from each uncertain input variable. However, it is not expected to work well when input 
ertainties are large relative to the nonlinearities or when estimating statistics that depend on the tails of the output PDFs. While the stochastic 
roach is slower, it is generally more robust. In particular, it fully captures nonlinearities in the velocity to pressure transform and naturally 
dles physical limits by rejecting simulated values falling outside the allowed range. In conclusion, the stochastic approach is preferred for 
ntitative uncertainty assessment but the linearized method remains useful as a first order approximation and for sensitivity analysis. The 3-D 
EM is particularly useful for assessing risk when planning wells, as shown in Figure 4. 
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