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Abstract 
 
Standard two-parameter inversion methods are analyzed and shown to be equivalent to each other. New two-parameter methods are 
derived which are modifications of the method of Fatti et al. and which yield different estimates of the shear impedance reflectivity. The 
first is linear and its results can also be obtained by appropriate combination of the results of Fatti et al. The other is non-linear, 
containing a term quadratic in the shear impedance reflectivity, but it can be solved non-iteratively. Inversions of synthetic data are 
carried which show that these methods can improve on the Fatti method for large density and shear impedance reflectivities. 
 
Introduction 
 
In AVO inversion one seeks to determine earth-property contrasts across an interface from the angle-dependence of seismic 
amplitudes. The starting point is RPP(θi), where RPP is the P-wave reflection coefficient determined from seismic amplitudes and θi is 
the angle of incidence at the interface. The final objective is a set of relative contrasts of the form ∆x/x, which can also be expressed 
as reflectivities, Ri. We set out these definitions as follows: 
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subscript 1 = earth layer above interface        subscript 2 = earth layer below interface   
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The Aki-Richards approximation (Aki & Richards, 1980), a linearization of the Zoeppritz equations in Rα, Rβ, and Rρ, has been the 
starting point for most AVO inversion work.  While the Zoeppritz equations give exact coefficients for idealized transmission, reflection, 
and conversion events, their complicated structure necessitates the use of non-linear inversion techniques. Inversion with the Aki-
Richards approximation is a one-step process, involving the least-squares solution of a set of linear equations. 
In reality of course one requires some “background” parameters as input to the inversion.  One requires an estimate of Rα, for use in 
raytracing, and an estimate of γ. These are required to set up the coefficients in the Aki-Richards equation.     
In practical inversions, the three-parameter Aki-Richards approximation is itself often set aside in favor of a two-parameter 
approximation.  The best-known of these are the approximation of Smith & Gidlow (1987), in which a differential form of Gardner’s 
relation (Gardner et al., 1974) is used to replace Rρ with Rα, and the approximation of Fatti et al. (1994), in which the contribution of 
Rρ is assumed to be negligible in comparison to that of RI and RJ. Reducing the number of variables controls large errors resulting 
from noise in the seismic data.   
In this research we develop two new AVO approximations. The first is a linear theory similar to the method of Fatti et al., but which has 
smaller errors in some situations. The second is a two-parameter method that is superior in some cases to the Fatti method for 
estimation of RJ. Although it is non-linear, it is unique in that it can be solved in a one-step process, without recourse to iterative 
techniques. 
Theory I: Linear two-parameter inversion with a simple two-data-point model, and a new approximation 
 
To begin we first take a new look at what is actually being calculated in a two-parameter inversion. Consider a simple case involving 
only two offsets, one of which is zero. In this case the equations for a general two-parameter linear inversion can be written as 

0( 0 )P PR A X= + 0B Y B Y          and            , 1 1( )P P iR A Xθ = +
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where X and Y are each some combination of reflectivities, and Ai and Bi are initially undetermined coefficients. To linear order, RPP(0) 
= Rα + Rρ and RPP(θi) = Rα/cos2θ – 4γ sin2θ Rµ + Rρ (as per the Aki-Richards equations, where θ = [θi + θt] / 2, and θt is the P-wave 
transmission angle). The general solutions for X and Y are linear combinations of RPP(0) and RPP(θi). Thus they are also linear 
combinations of RPP(0) and RPP(θi) cos2θ – RPP(0). This choice is convenient because RPP(0) is independent of Rµ and RPP(θi) cos2θ – 
RPP(0) is independent of Rα. These solutions can be obtained by setting B0 = 0 and A0/A1 = cos2θ. The solutions then simplify to 

0( ) / /I 0X R R A R Aα ρ= + =            and          ( )2 2
14 sin tan /Rµ ργ θ θ= − +Y R . B

Any two parameter inversion will yield these two quantities or linear combinations thereof. An analysis of the method of Fatti et al. 
shows that it corresponds to A0 =1/2 and B1 = − 4γ sin2θ, yielding 
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Thus Y(Fatti) is, to linear order, strictly equal to 2RJ only when γ cos2θ =1/4. Analysis of the Smith-Gidlow method shows that  
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From these results we can see that the Smith-Gidlow X and Y are, to linear order, equal to 2Rα and 2Rβ if Rρ = Rα /4 (as per the 
Gardner relation). Furthermore the results of either the Fatti or Smith-Gidlow methods can be combined to obtain the results of the 
other. These results have been obtained assuming two noise-free data points, but in Figure 1 the results obtained by least squares 
inversion on 31 noisy data points (θ = 0°, 1°, 2°,…30°) show that the conclusions above are, with θ set to θmax, still valid. 
The result of any two-parameter inversion can thus, to linear order, be reduced to Eqs (1) and (2).  Eq. (1) of course is the P-
impedance, and Eq. (2) is closest to RJ, as there is a minus sign inside the third error term in Eq. (2), allowing for some cancellation. A 
better approach may be to approximate Rρ by RI /5 and then obtain RJ  ≅ Y(S-G) +  X(S-G) /4. This can equivalently be obtained as  
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Comparing with Eq. (2) we see that this is the same as Y(Fatti) except that Rρ in the error term has been replaced by (4 Rρ – Rα)/5. 
The latter quantity is generally smaller, at least for large Rρ. This quantity can be obtained from Smith-Gidlow or Fatti results, or, 
because this is a linear theory, one can invert for it and RI directly using the same value of B as in the Fatti method, but replacing A by  
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Eq. (4) constitutes a new AVO approximation designed to give a more accurate estimation of RJ for large Rρ. 

Theory II: Importance of the RJ2 term and the resulting AVO approximation 
 
Eq. (2) suggests that deviations of Y(Fatti) from RJ are dominated by a linear trend in Rρ. However it was found that deviations from 
expected behavior are strongly correlated with Rβ

2 (or RJ2). Such deviations obscure the linear Rρ trend, except at very large values of 
Rρ. Such behavior with RJ2 has been noted in some of our earlier studies on other error quantities (Ursenbach 2003a,b). As a result it 
is reasonable to propose an AVO approximation of the form 
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A and B1 can be assigned the same values as in the Fatti method. B2 could be obtained by extending the approach of Aki and 
Richards to second order in ∆β/β. The correct result which removes (∆β/β)2 error terms in the inversion result is  
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where ϕ is the average of converted-wave reflection and transmission angles at the interface. The quantity cosϕ is well approximated 
by √(1 – γ sin2θ), and so requires no more input than that required by the linear theories. Eq. (5) is a non-linear theory, but it can be 
solved exactly without resorting to iterative techniques. Seeking a least-squares solution leads to a cubic polynomial in Rβ. This has 
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three solutions to choose from, and Rβ is equal to the real root having the smallest magnitude. With Rβ known, Rα can then be 
obtained as a quadratic function of Rβ.  
Eqs (5) and (6) constitute an augmented Fatti method. Solution of this two-parameter theory will again yield the quantities of Eqs (1) 
and (2) as its results, but without RJ2 error.  
Application 
 
In this section we compare the abilities of different methods to accurately calculate RJ. We carry out the inversion for 125 interfaces, 
as decribed earlier (Ursenbach, 2003a,b). We first consider noise-free data, and then add random noise to the P-P amplitudes.  
Figure 2 shows that Eq. (3) (or Eq. (4)) does not affect the RJ2 error, but that most of the outlying points (where the linear Rρ term is 
large) are improved. Figure 3 shows that Eq. (5) removes the RJ2 errors from the RJ estimates, but that the outlying points are often 
worse. However Figure 4 shows that when Eq. (5) is used with Eq. (3) or Eq. (4) that the outlying points are now as good or better 
than in the Fatti result. Figure 5 replicates the results of Figure 3, but with random noise added to the P-P amplitudes. One can still 
see similar trends, and the noise causes a similar degree of scatter in both two-parameter methods. Figure 6 is instructive. We have 
found that the range of inversion errors induced by a given level of noise is inversely proportional to γ and sin2θmax. Note that outlying 
points in the previous figures typically possess small γ. The non-linear theories are also proportional to 1+ 2Rβ, and the slope in both 
cases varies roughly as √(θi,max/n), where n is the number of data points (n=31 in Figures 1-6). 
Conclusions 
 
We have demonstrated that the methods of Smith-Gidlow and Fatti et al. (and all other linear, two-parameter methods) are equivalent. 
We have shown that a new linear, two-parameter method generally gives improved estimates of RJ when Rρ is large. We have also 
developed an augmented version of the Fatti method which includes a non-linear term. This method is more complicated to calculate, 
but is still non-iterative, and removes errors quadratic in RJ. It should always be used in combination with the first method, as that adds 
no extra difficulty and appears to give better results when Rρ is large. 
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Figure 2. A comparison of Fatti inversion with inversion based on 
Eq. (4). Points away from the quadratic trend are associated with 
large linear Rρ error terms. When these errors are large, Eq. (4) 
reduces them by replacing Rρ by 0.8Rρ – 0.2Rα in the error term. 

   
Figure 1. A comparison showing that RI and RJ estimates as 
calculated by the Fatti and Smith-Gidlow methods are equivalent. 
AVO inversion has been carried out by both methods on 125 
interfaces, using data of Castagna and Smith (1994) as described in 
Ursenbach (2003a,b).  
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Figure 3. A comparison of Fatti inversion with inversion based on 
Eq. (5). The RJ2 error is clearly absent in the latter result. However 
errors associated with the linear Rρ term, represented by outlying 
points, appear slightly worse in the new method. 

Figure 4. A comparison of the method of Eq. (5) with two other 
methods derived from it. In one method the results of Eq. (5) 
inversion are combined in the manner of Eq. (3). In the other 
method the A parameter in Eq. (5) is defined by Eq. (4). For a linear 
theory these procedures would give identical results. Eq. (5) is non-
linear, however, so they differ, but both improve the estimate of 
outlying points. Comparison with Figure 3 indicates that they 
compare favorably with the Fatti method as well. 

 

            

Figure 5. This figure is identical to Figure 3 except that random 
noise has been added to the P-P amplitudes prior to inversion. The 
same trends can be discerned, however, and one can see that the 
noise induces a similar degree of scatter in both two-parameter 
methods. 
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Figure 6. To obtain this data, 100 inversions were carried out (for 
each of the 125 interfaces) using different random errors each time. 
The value of RJ predicted for each interface varied with the error 
used, and the difference of maximum and minimum predictions for 
each interface was obtained and plotted above. The range of 
predictions for each interface was found to correlate with γ and 
sin2θmax, with a slope that depends on the interval between data 
points, and, for fixed θi,max, varies as 1/√n, where n is the number of 
data points. For quadratic methods, such as Eq. (5), the results also 
correlate with (1+ 2 Rβ). Results from noisy data are distributed on 
both sides of the noise-free results, so the latter are a good 
indication of the average behavior of noisy data. 
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