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Abstract 
 
With burgeoning world demand and a limited rate of discovery of new reserves, there is increasing impetus upon the industry to 
optimize recovery from already existing fields. 4D, or time-lapse, seismic imaging holds great promise to better monitor and 
optimise reservoir production. The basic idea behind 4D seismic is that when multiple 3D surveys are acquired at separate 
calendar times over a producing field, the reservoir geology will not change from survey to survey but the state of the reservoir 
fluids will change. Thus, taking the difference between two 3D surveys should remove the static geologic contribution to the data 
and isolate the time-varying fluid flow component. However, a major challenge in 4D seismic is that acquisition and processing 
differences between 3D surveys often overshadow the changes caused by fluid flow. This problem is compounded when 4D 
effects are sought to be derived from legacy 3D data sets that were not originally acquired with 4D in mind. The goal of this study 
is to remove the acquisition and imaging artefacts from a 4D seismic difference cube using Curvelet processing techniques. 
 
The denoising problem 
 
In this paper, we argue that computing 4D difference cubes can be recast into the framework of solving a generic denoising 
problem that estimates the model m from noisy data 
 

(1) nmd +=
 

with Gaussian noise n. The solution of this inverse problem can be written in terms of the following variational problem 
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where J(m) is an additional penalty function that contains prior information about the model, such as particular sparseness 
constraints [10,11]. The control-parameter µ rules how much emphasis one would like to give to the prior information on the 
model. 
 
The question now is: how can we solve this denoising problem effectively? In other words, how can we construct a diagonal 
decision operator that minimizes the energy difference between the estimate and the true model given the prior information? It 
appears from the work of [7], [10] and others that, for a certain class of models, one can obtain nearly optimal denoising results, 
i.e. near optimal SNR for denoised data, by projecting noisy data onto a basis-function representation that is optimal for that 
particular class of models. In doing so, most of the model's energy will reside in only a few coefficients, allowing for the definition of 
a shrinkage estimator that separates noise from the model. For basis functions that are also local, one can show that soft 
thresholding of the coefficients suffices to approximately solve the above denoising problem, i.e. 
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where B is the basis-function expansion and B-1 is its (pseudo)-inverse. θµ is a thresholding operator with a threshold that, for 
orthonormal basis functions, equals µ=σ(2logeN)1/2 with σ the standard deviation of the noise and N the number of data [10,7]. 
Soft thresholding solves Eq. (3) on the coefficients for a penalty function given by the L1-norm, i.e. J(m) = ||m||1. Comparison of 
equations 2 and 3 establishes the connection between the threshold and the control parameter µ. 
 
Wavelets, and their recent extension to Curvelets, derive their success mainly from their ability to represent a model locally and 
sparsely. This facilitates the definition of simple non-linear thresholding estimators that locally decide (adaptively filter) whether a 
certain event pertains to the model or to the noise. The question now is: can we extend these Wavelet-adaptive filtering ideas to 
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the computation of 4D difference cubes? Before answering this question, let's be more specific with respect to the choice of the 
appropriate basis functions for representing seismic data volumes. 
 
Localized basis-function decomposition 
 
Curvelets, as proposed by [2,1,4], constitute a relatively new family of non-separable Wavelet bases that are designed to 
effectively represent seismic data with reflectors that generally tend to lie on piece-wise smooth curves. This property makes 
Curvelets suitable to represent reflectors within vertical/horizontal slices of migrated volumes- including faults. For these type of 
signals, Curvelets obtain nearly optimal sparseness, yielding (i) a rapid decay in reconstruction error as a function of the largest 
coefficients; (ii) concentration of the signal's energy in a limited number of coefficients; and (iii) relatively easy separation of noise 
versus model. So how do Curvelets obtain such a high non-linear approximation rate? Without being all inclusive [see for details 
2,1,4,6], the answer to this question lies in the fact that Curvelets are 
 

• multi-scale, i.e. they live in different dyadic corona (see Fig. 1 (Left) in the (kx, ky)-domain, or, equivalently, the (kx, kz)-
domain) 

• multi-directional, i.e. they live on wedges within these corona (see Fig. 1 (Left)) 
• anisotropic, i.e. they obey the scaling law width ∝ length2  
• directional selective, with # orientations ∝ length2 
• local, both in (x,y) and (kx, ky) 
• almost orthogonal- they are tight frames with a moderate redundancy.  

 
These properties make Curvelets the appropriate basis functions for dealing with seismic data. However, so far no 3-dimensional 
Curvelets have been developed. As a result, we have the choice to apply Curvelet transforms to either depth slices or to the in-line 
direction, followed by applying a shift-invariant Wavelet transform [5] in the depth or cross-line direction. 
 

 
Figure 1. Left: Curvelet Partitioning of the Frequency Plane [modified from 3] 

Right: Comparison of non-linear approximation rates for Curvelets and Wavelets [modified from 6] 

 
Adaptive subtraction 
 
Given the above basis-function decomposition, how can we recast the computation of 4D difference cubes into a denoising 
problem? The problem is that we would like to reduce difference-noise, which we define as representing (i) incoherent noise in the 
two volumes; (ii) misalignments of reflectors between the two surveys; and (iii) differences in acquisition footprints. During this 
noise removal, we would like to preserve and emphasize 4D effects. In light of these objectives, we choose not to actually subtract 
the two datasets, but rather filter one with the other. We consider one dataset to be the “noise” n of Eq. 1 (not to be mistaken with 
the difference-noise defined above) of the other, the data d, and carry out our program by a denoising procedure- yielding an 
estimate for the difference-signal m . ˆ
 
The crux of any filtering operation lies in being able to optimally represent both the model  (the difference-signal) and “noise” n 
(the second dataset). This optimality refers to the basis-function's ability to sparsely represent both the model and the noise. If, in 
addition, the basis functions are localized, superior filtering results are obtained, i.e. better signal-to-noise ratios. This superiority is 
not only due to a reduction of the dimensionality of the subtraction problem but is also related to the locality of the basis functions, 
permitting the use of non-linear estimators based on thresholding [see e.g. 10]. These estimators make localized decisions on 
whether certain events are 4D effects or belong to the difference-noise, based on the magnitude of the coefficients in the basis-
function decomposition. The better the basis functions approximate the model and, in the case of coherent noise, the noise, the 
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better the local decision operator will be able to discriminate between difference-signal and difference-noise. Since the basis 
functions we are using are local, the decision operator can be a simple hard- or soft-thresholding operator [10], which shrinks the 
coefficients towards zero that are below a certain threshold. We refer to another paper in these proceeding (by the same last 
author) where the same technique is used to remove predicted multiples. 
 
As the example in the next section demonstrates, the optimal denoising capabilities for incoherent noise (cf. Eq. 3) carry over to 
coherent noise removal, provided we have a reasonable consistency in the imaging and data acquisition between the two 
vintages. By choosing a threshold defined by one of the vintages, i.e. 
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with B representing the combination of Curvelet and Wavelet decompositions, we are able to adaptively decide whether a certain 
coherent feature belongs to an actual 4D effect or to difference-noise. In this expression, η is a threshold control-parameter and 
the 3 is related to the 95% confidence interval. 
 
Application 
 
Two 3D seismic surveys were acquired at the Ula North Sea oil field in 1984 and 1999 respectively. Even though the datasets 
have been processed in parallel, the fact that the two surveys were shot in perpendicular directions and with different acquisition 
systems may complicate the extraction of 4D effects [9]. 
 
For the present case, our goal is to suppress the remaining imaging and acquisition artefacts such that the true 4D signature may 
be better expressed. The Curvelet-estimation technique presented in this paper was used and we proceeded as follows. First, the 
Curvelet transform was applied along slices in the in-line direction of the 1984 and 1999 vintage datasets. This was followed by a 
non-decimated Wavelet transform in the cross-line direction. Subsequently, the threshold was calculated according Eq. 4: n given 
by the 1984 dataset and η=1. Finally, we applied the thresholding procedure defined in Eq. 3 on d given by the 1999 dataset. The 
effects of the thresholding on the vector containing the curvelet coefficients are shown in Fig. 2. 
 
To illustrate our results, we compare in Fig. 3 the reconstruction from the thresholded coefficients with the ordinary difference cube 
along the picked Top Ula horizon, which caps the producing reservoir. The superimposed logarithmic color scheme is 
representative for averaged amplitude difference magnitude over the first 5 samples below the picked horizon. Hot colours 
correspond to amplitude brightening while cold colors correspond to dimming.  The top of the reservoir is located at record 200, 
trace 26- which is not within the range of the data we presently have available. The region shown is near a gas injector. 
 
Figure 3A shows the difference magnitudes for the ordinary difference cube, which suffers from artefacts induced by the 
difference-noise.  These artefacts overshadow the smaller differences caused by true 4D effects. Difference is particularly large at 
the faulted and steeply dipping part of the horizon near record 10, trace 25. This is likely a result of reflector misalignment between 
the two surveys. Figure 3B shows difference projected onto the Top Ula horizon after Curvelet domain adaptive subtraction. It 
appears that difference-noise has been significantly reduced and it is believed that the remaining differences mainly result from 
true reservoir changes. 
 

 
Figure 2. Curvelet coefficient vectors before and after thresholding 
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Figure 3. 1984-1999 difference projected onto the Top Ula horizon from ordinary  
difference cube (A) and computed using Curvelet domain adaptive subtraction (B) 

 

Discussion 
 
We presented an alternative method to compute difference cubes. Our method is not based on the actual subtraction of two 
datasets, risking the introduction of artefacts due to incoherent noise, possible misalignments, and differences in acquisition. 
Rather, it mutes events of one dataset with respect to the other based on coefficients in a sparse and local basis function 
decomposition. As a result, we do not introduce artefacts by subtracting misaligned events. Rather, events with a strong presence 
in the other dataset are muted. Even though the example shown is preliminary, it shows promise; as does the application of this 
method to adaptive subtraction of predicted multiples and migration, on which is reported elsewhere in these proceedings. 
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