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Abstract 
 
A non-linear edge-preserving solution to the least-squares migration problem with sparseness constraints is introduced. The applied 
formalism explores Curvelets as basis functions that, by virtue of their sparseness and locality, not only allow for a reduction of the 
dimensionality of the imaging problem but which also naturally lead to a non-linear solution with significantly improved signal-to-noise 
ratio.  Additional conditions on the image are imposed by solving a constrained optimization problem on the estimated Curvelet 
coefficients initialized by thresholding. This optimization is designed to also restore the amplitudes by (approximately) inverting the 
normal operator, which is like-wise the (de)-migration operators, almost diagonalized by the Curvelet transform. 
Introduction 
Least-squares migration and migration deconvolution has been a topic that received a recent flare of interest [9] [10]. This interest is 
for a good reason because inverting for the normal operator (the demigration-migration operator) restores many of the amplitude 
artifacts related to acquisition and illumination imprints. However, the downside to this approach is that least-squares tends to smear 
the energy leading to a loss of resolution. By imposing certain sparseness constraints on the imaged reflectivity, progress has been 
made to boost the frequency content of the image [13] [10]. 
This paper comes up with an alternative formulation for the imaging problem designed to (i) deal with substantial amounts of noise; (ii) 
use the optimal (sparse \& local) representation properties of Curvelets and their almost diagonalization of the imaging operators; (iii) 
use non-linear thresholding techniques, supplemented by constrained optimization on the estimated coefficients, imposing additional 
sparseness on the model. This paper borrows from ideas by [4] and is an extension of earlier work by [7], in which Contourlets [5] 
were used to denoise and approximately least-square migrate without having access to demigration operators.  
The paper is organized as follows. First, we briefly discuss the imaging problem and motivate why Curvelets are the appropriate 
choice for seismic imaging and processing. We proceed by introducing the non-linear estimation procedure with thresholding in the 
image space. We show that Monte-Carlo sampling techniques can be used to compute a correction for the threshold that incorporates 
the coloring of the noise due to migration. We conclude by introducing a constrained optimization approach aimed to (approximately, 
via the diagonal/symbol of the normal operator in the Curvelet domain) invert for the normal operator while imposing sparseness. The 
optimization is designed to reduce possible imaging and estimation artifacts, such as side-band effects, erroneous thresholding and 
bad illumination. The method will be illustrated by a synthetic example using a Kirchoff migration operator. 
The seismic imaging problem 
In all generality, the seismic imaging problem can after linearization and high-frequency approximation be cast into the following form 
for the forward model describing our data: 

d = Km + n  (1) 
where K  is the (Kirchoff) (de)-migration/scattering operator,  the model with the reflectivity and  white Gaussian noise. The 
pertaining inverse problem has the following general form [see e.g. 11, 14] 

m n

J(m) +|Km-d|
2
1 min :m̂ 2

2 µ  (2) 
m

where J(m) is an additional penalty function that contains prior information on the model, such as particular sparseness constraints. 
The control-parameter µ rules how much emphasis one would like to give to the prior information on the model. How can we find the 
appropriate domain to solve this inverse problem?  
By hitting the data with the migration operator (the adjoint of the scattering operator denoted by *), followed by sandwiching the normal 
operator between basis-function (de)-compositions, collapses the energy onto a limited number of coefficients.  Question is how to 
recover these coefficients from the now colored noise  
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At this point, the cruciality of the right choice for the basis functions becomes apparent. Not only do we wish to represent the model 
sparsely, but we would also like to correct for the coloring of the noise. Essentially what we want is high non-linear approximation 
ratefor the model and an almost diagonalization of the (de)-migration and normal operators. Mathematically these operators 
correspond to Fourier Integral (FIO))and Pseudo Differential Operators (ψDO ), respectively. Only under these conditions, we can 
hope for a significant improvement in the image quality by solving  
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Figure 1. Properties of the Curvelet Transform under imaging.  Curvelet and its demigration (first 2 panels). Clearly, the Curvelet 
remains Curvelet-like, which can be explained from its excellent frequency-localization. FK-spectrum is included in the third panel. 
The rapid decay for the ``off-diagonal'' coefficients of the Curvelet-images under the (de)-migration and normal operators are 
shown in the fourth panel. 
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Curvelets 
Curvelets as proposed by [2,4], constitute a relatively new family of non-separable wavelet bases that are designed to effectively 
represent seismic data with reflectors that generally lie on piece-wise smooth curves ( m ∈C2 ). Since it has also been shown that 
these basis functions are well behaved under the action of the (de)-migration and normal operators [1] Curvelets – as opposed to 
Wavelets – are the right choice. The well-behavedness corresponds to the property that these basis function remain approximately 
invariant under the operators as we can see from Fig.1, where not only Curvelets remain Curvelet-like but where also a rapid decay 
for the coefficients of images of Curvelets are observed. Evidently, these properties make Curvelets suitable to be used in imaging 
since they not only represent the model very well (they obtain near optimal non-linear approximation rates), but they also almost 
diagonalize the normal operator and hence the Covariance of to the colored noise on the image, Cov ˜ n ̃  n . With the 
appropriate correction for the threshold, we are in the position to relatively easily separate noise from model. How do Curvelets obtain 
such a high non-linear approximation rate? Without being all inclusive [see for details 2,4,5], the answer to this question lies in the fact 
that Curvelets are (i) multi-scale, i.e. They live in different dyadic corona in the 2D Fourier-domain. (ii) multi-directional, i.e. They live 
on wedges within these corona. (iii) anisotropic, i.e. They obey the following scaling law width~length^2. (iv) Directional selective with  
orientations. (v) Local both in (

= E( ˜ n ̃  n *)

x,y) and ( kx,ky ). (v) Almost orthogonal, they are tight frames.  
 
Migration denoising by thresholding 
After applying migration, the estimate for the  (denoted by ^) involves the solution of a denoising problem in the presence of colored 
Gaussian noise. For white Gaussian noise, thresholding on the coefficients solves inverse problems of the type given in Eq. 2 by 
setting K=I. When using Curvelets, 

u

ˆ u = B-1 θµ (Bu) (5) 
Solves the denoising problem for piece-wise smooth reflectors. In this expression, θ  is the thresholding operator with threshold 

eµ =σ 2log N , N number of samples and σ  the standard deviation of the noise [see for detail 6,11,3]. So how can we correct for 
the coloring of the noise knowing that the Covariance is almost diagonal? The answer is simple, simply weight the threshold with the 
square root of the diagonal, i.e. 

µ =η Γ with Γ = diag(Cov˜ n ̃  n )  (6) 
and η  an additional control parameter (de)-emphasizing he thresholding, setting the confidence interval (e.g.  t η = 3 corresponds to 
a 95% confidence interval). Applying this threshold, µ  to the coefficients of the image yields, after inverse-Curvelet 
transforming, the estimate for the migrated image. Comparison with the original noisy image in Fig. 2 shows a remarkable reduction of 
the noise. However, the amplitudes have not been recovered accurately because   still contains the normal operator, 

˜ ˆ u = θ ( ˜ u )
ˆ u ˜ ˆ u = ˜ A m . 

 
Amplitude restoration by constraint optimization 
Now that we have successfully removed the noise from the migrated imaged, it is time to restore the amplitudes and impose the 
sparseness constraint. With the latter, we hope to (i) remove the imaging by approximately inverting for the normal operator by the 
pseudo-inverse of the diagonal  also proposed in [7], estimation and side-band artifacts; (ii) enhance the continuity along the 
imaged reflectors. To accomplish these goals, we propose the following strategy, which is close to the ideas presented by [4] except 
that we include imaging operators. Solve the following constrained optimization problem  

Γ

µµ ≤≤ |u~-m~)A~diag(| s.t. J(m) minely  approximator   |u~-m~A~| s.t. J(m) min :m̂
mm

˜ 
 (7) 

A ≈ ΓWhere, in the approximate case, explicit use has been made of the approximate property that . This property shows that Γ  
acts as the symbol of the normal operator in the Curvelet domain. We solve this constrained optimization by using an augmented 

  Great Explorations – Canada and Beyond 2



Lagrangian method involving a Steepest Decent Method [see for details 12]. In the approximate case, there is besides the 
computational benefits, the additional advantage that access to the modelling/demigration operator is no longer necessary. In fact, 
when provided with Γ , we are able to approximately turn a vanilla migration into a least-squares migration.  Moreover, the fudge 
factor on estimated coefficients allows for the minimization of the additional penalty function.  
Remains how to get the Γ . In case K is a fixed (read non-velocity model dependent) homogeneous operator, such as the Radon 
transform, the Γ  can be calculated analytically [as shown by 6,3] and some of these results could potentially carry over to seismic 
imaging. However, acquisition and illumination imprints remain a problem and we therefore use [see also 7,8] a Monte-Carlo sampling 
technique to estimate the diagonal of the Covariance operator from  

∑Γ 2
in~

M
1= (8) 

M

=1iWith i  Curvelet-transformed migrated images of independent realizations of pseudo-random white Gaussian noise. Typically, about 
50 realizations are taken. 

˜ n 

Example 
To illustrate our proposed method, we included a synthetic example of a common-offset Kirchoff migration for a constant velocity 
model.  To show the capabilities of our method, we present our results broadband. We choose 512 sources, time samples, depth and 
lateral positions. To remove artifacts and improve the continuity along reflectors we used a L1-norm, J(m) =| m |1. As we can see 
from the example shown in Fig. 2, thresholding followed by optimization yields a substantially improved image, where most of the 
coherent energy has been removed. Conversely, least-squares migration by Conjugate gradients concentrates the energy of the noise 
towards regions that are not well insonified and fails to restore the amplitudes. Our method, on the other hand, removes most of the 
artifacts and restores the amplitudes for the larger angles. 
 
Conclusions and discussion 
The methodology presented is an example of divide and conquer. First, we got a reasonable estimate for the image by thresholding 
then we dealt with amplitude restoration and artifact removal. We build on the premise that one stands a much better chance to solve 
an inverse problem by projecting data into the appropriate domain. The combination of migration with the Curvelet transform provides 
such a domain, where the energy is collapsed onto a limited number of coefficients that correspond to coherent features along which 
Curvelets align. Since Curvelets are local in space and spatial frequency, thresholding can be used on the image. By correcting the 
threshold with the diagonal of the Covariance, the noise is whitened and thresholding successfully removed the bulk of the coherent 
noise while preserving the reflectors.  Imaging amplitudes and continuity were restored by approximately inverting the normal operator 
with its diagonal. Thresholded coefficients were used to start the constrained optimization which greatly improved the image quality by 
imposing the L1-sparseness constraint. Results for the approximate inversion of the normal operator were slightly better, which can be 
understood because the diagonal acts as the Curvelet-equivalent for the symbol of the normal operator. Artifacts generated by the 
imaging operator can correspond to a non-ψDO  behavior, which may be thought off as off-diagonal erroneous components. Current 
research, is focusing on extension to pre-stack imaging; inclusion of different norms and the removal of other coherent noise-sources 
(multiples etc.) on the image space and the construction of imaging operators directly in the Curvelet domain. 
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