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Abstract 
 
Predictive multiple suppression methods consist of two main steps:  a prediction step, in which multiples are predicted from the seismic data, 
and a subtraction step, in which the predicted multiples are matched with the true multiples in the data.  The last step appears crucial in 
practice:  an incorrect adaptive subtraction method will cause multiples to be sub-optimally subtracted or primaries being distorted, or both. 
Therefore, we propose a new domain for separation of primaries and multiples via the Curvelet transform.  This transform maps the data into 
almost orthogonal localized events with a directional and spatial-temporal component.  The multiples are suppressed by thresholding the input 
data at those Curvelet components where the predicted multiples have large amplitudes.  In this way the more traditional filtering of predicted 
multiples to fit the input data is avoided.  An initial field data example shows a considerable improvement in multiple suppression. 
 
Introduction 
 
In complex areas move-out filtering multiple suppression techniques may fail because underlying assumptions are not met.  Several attempts 
have been made to address this problem by either extending move-out discrimination methods towards 3D complexities (e.g. by introducing 
apex-shifted hyperbolic transforms [7]) or by coming up with matching techniques in the wave-equation based predictive methods [see e.g. 
17,1]. Least-squares matching the predicted multiples in time and space overlapping windows, [16] provides a straightforward subtraction 
method, where the predicted multiples are matched to the true multiples for 2-D input data.  Unfortunately, this matching procedure fails when 
the underlying 2D assumption are severely violated.  There have been several attempts to address this issue and the proposed solutions 
range from including surrounding shot positions [11] to methods based on model- [14], data-driven [10] time delays and separation of predicted 
multiples into (in)-coherent parts [12]. Even though these recent advances in adaptive subtraction and other techniques have improved the 
attenuation of multiples, these methods continue to suffer from (i) a relative strong sensitivity to the accuracy of the predicted multiples; (ii) 
creation of spurious artifacts or worse (iii) a possible distortions of the primary energy.  For these situations, subtraction techniques based on a 
different concept are needed to complement the processor’s tool box. 

 
The method we are proposing here holds the middle between two complementary approaches common in multiple elimination:  prediction in 
combination with subtraction and filtering [15,7]. Whereas the first approach aims to predict the multiples and then subtract, the second 
approach tries to find a domain in which the primaries and multiples separate, followed by some filtering operation and reconstruction.  Our 
method is not distant from either since it uses the predicted multiples to non-linearly filter data in a domain spanned by almost orthogonal and 
local basis functions.  We use the recently developed Curvelet transform [see e.g. 4], that decomposes data into basis functions that not only 
obtain optimal sparseness on the coefficients and hence reduce the dimensionality of the problem but which are also local in both location and 
angle/dip, facilitating the definition of non-linear estimators based on thresholding.  Main assumption of this proposal is that multiples and 
primaries have locally a different temporal, spatial and dip behavior, and therefore map into different areas in the Curvelet domain.  Multiples 
give rise to large Curvelet coefficients in the input and these coefficients can be muted by our estimation procedure when the threshold is set 
according to the Curvelet transform of the predicted multiples.  As such, our suppression technique has at each location in the transformed 
domain one parameter, namely the threshold yielded by the predicted multiple, beyond which the input data is suppressed.  In that sense, our 
procedure is similar to the ones proposed by [18] and [15], although the latter use the non-localized FK/Radon domains for their separation 
while we use localized basis functions and non-linear estimation by thresholding. Non-locality and non-optimality in their approximation renders 
the first filtering techniques less effective because primaries and multiples will still have a considerable overlap.  The Curvelet transform is able 
to make a local discrimination between interfering events with different temporal and spatial characteristics. 
Adaptive subtraction by non-linear estimation of the Curvelet coefficients 
 
The denoising problem 
 
Removing predicted multiples can be seen as a particular instance of a generic denoising problem that estimates the model (primaries) m from 
noisy data (data including multiples) [See e.g., 13]  
 d = m+ n  (1) 

with n white Gaussian noise.  Main difference between this problem and ours is that in our case the noise is coherent and considered to be the 
multiples to which we have access through prediction. 

Question now is:  how can we solve this denoising problem effectively?  In other words, how can we construct a diagonal decision operator 
that minimizes the energy difference between the estimate and the true model. It appears from the work of [6], [13] and others that, for a 
certain class of models, one can obtain nearly optimal denoising results, i.e. near optimal SNR for denoised data, by projecting noisy data onto 
a basis-function representation that is optimal for that particular class of models.  In that case, most of the model’s energy resides in only a few 
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coefficients, allowing for the definition of a shrinkage estimator that separates noise from the model.  For basis functions that are also local, 
one can show that soft thresholding on the coefficients suffices to approximately solve the denoising problem, i.e.   
 ˆ m = B−1Θµ Bd( )  (2) 

In this expression,  refers to the (pseudo)-inverse of B, which is he ba nction expansion. B−1  t sis-fu Θµ  is a soft/hard thresholding operator 
with a threshold that for orthonormal basis functions equals [13,6, ] eµ =σ 2log N  with σ  the standard deviation of the noise and N the 
number of data samples.  Question now is:  can we extend these results to colored noise and to be specific to noise given by the predicted 
multiples?  Before answering this question let us first be more specific with respect to the choice of the appropriate basis functions for seismic 
data, primaries as well as multiples. 

The basis functions 
 
Curvelets as proposed by [3], constitute a relatively new family of non-separable wavelet bases that are designed to effectively represent 
seismic data with reflectors that generally tend to lie on piece-wise smooth curves.  This property makes Curvelets suitable to represent events 
in seismic whether these are located in shot records or time slices.  For these type of signals, Curvelets obtain nearly optimal sparseness, 
because of (i) the rapid decay for the reconstruction error as a function of the largest coefficients; (ii) the ability to concentrate the signal’s 
energy in a limited number of coefficients; (iii) the ability to map noise and signal to different areas in the Curvelet domain.  So how do 
Curvelets obtain such a high non-linear approximation rate?  Without being all inclusive [see for details, 2,4,3,5], the answer to this question 
lies in the fact that Curvelets are  

• multi-scale, i.e. they live in different dyadic corona (see for more detail [3] or the other contributions of the fist author to the 
proceedings of this conference) in the FK-domain.  

• multi-directional, i.e. they live on wedges within these corona.  

• anisotropic, i.e. they obey the following scaling law width∝length2.  

• directional selective with # orientations∝ 
1

 scale
.  

• local both in (x,t)) and KF.  

• almost orthogonal, they are tight frames with a moderate redundancy.  

Curvelets live in a wedges of the 2-D Fourier plane and become more directional selective and anisotropic for the higher frequencies.  They 
are localized in both the space (or (x,t)) and spatial KF-domains and have, as consequence of their partitioning, the tendency to align 
themselves with curves/wavefronts.  As such they can be more flexible then a representation yielded by high-resolution Radon [as described 
by e.g. Trad [15] because they are local and able to follow any piece-wise smooth curve. 
A tantalizing perspective 
 
As the examples in the next section clearly demonstrate, the optimal denoising capabilities for incoherent noise carry over to coherent noise 
removal provided we have reasonable accurate predictions for the noise, the multiples in this case.  By choosing a threshold defined by the 
predicted multiples, i.e.   
 µ ≈ηBn   (3) 

we are able to awe are able to adaptively decide whether a certain event belongs to primary or multiple energy.  The n contains the predicted 
multiples and h represents an additional control parameter which sets the confidence interval (e.g. 95 % for η=3) (de)-emphasizing the 
thresholding. 
Results of multiple subtraction via thresholding in the Curvelet domain 
 
The above methodology is tested on a field dataset from offshore Scotland.  This is a 2D line, which is known to suffer from strong surface-
related multiples.  Because the geology of the shallow sub-bottom layers is laterally complex, multiples have been observed to exhibit 3D 
characteristics.  Applying surface-related multiple elimination to this data gives only an attenuation of surface multiples, but not a complete 
suppression.  This lack of suppression can be observed for a shot record shown in Fig. 1. When comparing the predicted multiples with the 
input data a good resemblance is observed in a global sense. However, when a matching filter is calculated, it appears that the predicted 
multiples do not coincide well enough with the true multiples, mainly due to 3D effects.  Locally the temporal and spatial shape of the predicted 
multiples - especially for the higher order multiples - differs from the true events.  Estimating shaping filters in spatially and temporally varying, 
overlapping windows, as described by [16] can not resolve this mismatch completely.  The adaptive subtraction result is displayed in Fig. 1 in 
the third panel.   
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Figure 1:  Comparison between adaptive least-squares (using time and space varying least-squares filters)and Curvelet subtraction of 
predicted multiples for one shot record.  Input data (left), predicted multiples (second), least-squares subtraction (third) and the results by 
thresholding Curvelet (right). 

 

 
Figure 2:  Time slice through the prestack data volume of all shot records.  Top left:  Time slice through the input data with all multiples.  Top 
right:  Slice through the 2D predicted surface-related multiples.  Bottom left:  Time slice through the shot records after adaptive subtraction per 
shot record of the predicted multiples.  Bottom right:  The Curvelet equivalent of the adaptive subtraction computed for a single time horizon. 

To improve this result, more freedom can be incorporated in the subtraction process.  However, note that the more the predicted multiples can 
adapt to the input data, the higher the chance that primary energy will be distorted as well, as the primary and multiple energy are not 
orthogonal to each other in the least-squares sense. Multi-gather subtraction using 9 surrounding multiple panels gives better suppression of 
the multiples but leaves a lot of multiple remnants to be observed, especially for the large offset at large travel times.  The output gather of the 
Curvelet method (see fourth panel in Fig. 1) looks much cleaner. Furthermore, clear events have been restored from interference with the 
multiples in the lower left area.  Also note the good preservation of a primary event around -1000 meter offset and 1.1 seconds.  The 
amplitudes seem to be identical to the ones in the input data, whereas the adaptive subtraction has distorted these amplitudes to some extend.  
For the Curvelet-domain procedure, the threshold value can be set by the user, thus creating more or less suppression.  Too weak 
thresholding leaves too much multiples in the data and that a too strong thresholding procedure seems to remove too much energy.  The 
filtering via the Curvelet domain can also be applied within each 2D cross-section through the seismic data volume.  Time slices at t=1.48 
through the prestack shot-offset data and predicted-multiple volumes are displayed in Fig. 2 (top row). Results after application of the adaptive 
subtraction per shot record and the time-slice only Curvelet subtraction are included in Fig. 2 (bottom row). Again, the Curvelet results look 
much cleaner than the least-squares subtraction result. Much of the noisy remnants at small offsets in the least-squares subtraction result 
have been removed.  Notice also the improved suppression of the higher order peg-legs in the area around shot 900 and offset 1500 meter. 

 Great Explorations – Canada and Beyond 3



  Great Explorations – Canada and Beyond 4

C
 

onclusions 

In this paper a new concept related to multiple subtraction has been described, based on the Curvelet transform.  The Curvelet transform is an 
almost orthogonal transformation into local basis functions parameterized by their relate temporal- and spatial-frequency content. Because of 
their anisotropic shape, Curvelets are directional selective, i.e. they have local angle-discrimination capabilities. Our method uses the predicted 
multiples from the surface-related multiple prediction method, as a guide to suppress the Curvelet coefficients related to the multiple events 
directly in the original data.  Therefore, the multiples are not actually subtracted, but areas in the Curvelet domain related to multiple energy 
are muted.  The success of this method depends on the assumption that primaries and multiples map into different areas in the Curvelet 
domain.  Based on a field data example, we can conclude that the Curvelet-based multiple filtering is effective and is able to suppress 
multiples, while preserving primary energy.  Especially in situations with clear 3D effects in the 2D seismic data, it appears to perform better 
than the more traditional least-squares adaptive subtraction methods.  This success does not really come as a surprise given the successful 
application of these techniques to the removal of noise colored by migration [8,9] and to the computation of 4D difference cubes (see for 
details in both other contributions of the first to proceedings of this conference). Leaves us to hope for future higher dimensional 
implementation of the Curvelet transform possibly supplemented by constraint optimization imposing sparseness constraints (see the 
migration paper in these proceedings). 
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