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Abstract 
 
Density reflectivity is a desirable AVO attribute sought by the explorationist since it has the potential to say something about the fluid 
saturation. However accurate density reflectivity estimates are difficult to obtain due to the ill-conditioned nature of the inverse 
problem. A small amount of noise will lead to large errors in the estimates. To improve the stability of the inversion, large angles and 
offsets are required but these bring their own problems. One set of related problems is NMO stretch and offset dependent tuning. This 
paper develops and demonstrates an AVO waveform inversion that incorporates into its forward model these factors allowing for 
accurate estimates even in their presence. Well constraints and various regularization strategies are employed to further enhance the 
reliability of the solution. 
Introduction 
 
 There is a great deal of interest in the exploration community in the use of long offset seismic data to perform three term AVO analysis 
to predict density reflectivity. This paper develops and demonstrates a three term AVO waveform inversion. By incorporating the 
waveform and the NMO operator, NMO stretch and offset dependent tuning can be modeled as part of the inverse problem leading to 
more accurate estimates of the reflectivity. The input seismic data can be either NMO corrected or left uncorrected.  
 Van Koughnet et al. (2003) published a series of examples from the Gulf Coast showing that density reflectivity can be practically 
solved for and used in an exploration environment. The technique requires data with good signal to noise, large angles and offsets. 
Unfortunately data recorded at these offsets often have amplitude and character distortions introduced from the wave propagation and 
processing. One such distortion is NMO stretch and the related effect offset dependant tuning. Dong (1999) quantified the affect of 
both these on AVO. Downton et al. (2003) showed these affects were particularly problematic for class III and IV AVO anomalies. 
Swan (1997) suggested a way of correcting for NMO stretch but the technique is only applicable for two term AVO inversion. Downton 
and Lines (2002, 2003) proposed a waveform inversion to correct for NMO stretch and offset dependent tuning demonstrating again a 
two-term avo model. This paper extends the approach to three-terms.  
 In the first part of this paper the relevant theory is developed using a Bayesian formalism. The likelihood function is developed 
assuming Gaussian statistics and extends the AVO waveform inversion of Downton and Lines (2003) to three terms. This original 
formulation assumes the seismic data has not been NMO corrected. A modification is introduced allowing NMO corrected seismic 
data to be used as input to the inversion. Because of the band limited nature of the seismic data the inverse problem is 
underdetermined necessitating the use of constraints. Constraints from well control are introduced which help establish the 
relationship between the different parameters solved for. Based on this a priori information, a change of variables is performed so that 
the parameters solved for are statistically independent. After the change of variables the problem is still undetermined so the problem 
needs to be regularized. Similar to Downton and Lines (2003) this can be done by choosing a weighting function that treats certain 
reflection coefficients as being more reliable than others. Choosing a long tailed a priori distribution leads to such a weighting function. 
This leads to a nonlinear inversion which is solved using conjugate gradient. The number of iterations used in solving the conjugate 
gradient algorithm also acts as a regularization parameter.  
 The algorithm is demonstrated on both synthetic and real seismic data. The synthetic example was constructed so as to include NMO 
stretch and offset dependent tuning that would bias the AVO estimates for a traditional AVO inversion. Good estimates of all the 
reflectivity, including the density, are obtained even when the density reflectivity is uncorrelated with either the P-wave or S-wave 
velocity reflectivity at noise levels typical in real seismic data. The algorithm accurately estimates the reflectivity even on events 
undergoing NMO stretch and differential tuning. The seismic data example demonstrates how the algorithm successfully differentiated 
a known density anomaly at two well locations. 
Theory 
 
The convolutional model is used as the basis for the likelihood model. This model assumes the earth is composed of a series of flat, 
homogenous, isotropic layers. Ray tracing is done to map the relationship between the angle of incidence and offset. Transmission 
losses, converted waves, and multiples are not incorporated in this model and so must be addressed through prior processing. In 
theory, gain corrections such as spherical divergence, absorption, directivity, and array corrections can be incorporated into this 
model, but are not considered for brevity and simplicity, so must be previously applied in the processing. Any linear approximation of 
the Zoeppritz equations may be used as the starting point for this derivation.   
Downton and Lines (2002) use the two-term Fatti approximation to develop a waveform inversion. This formulation extended to three 
terms is 
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where rp,rs,rd  are the P- and S-velocity, and density reflectivity respectively.  These are all vectors whose elements correspond to 
different time samples.  Likewise the elements of the data vector dn represent the processed seismic data for the nth offset for the 
corresponding time samples.  The block matrices describe the physics of the problem.  The matrices F, G, and H are diagonal 
matrices that contain weights that describe how the amplitude changes as a function of offset.  These weights follow from the three-
term Aki and Richards equation (1980, equation 5.44).  Following Claerbout (1992), the block matrix Nn performs NMO.  This operator 
can be constructed using whatever offset traveltime relationship one desires. In order to invert data at large angles of incidence, it is 
important to correctly position the event without introducing residual NMO. In this case, a higher order correction is used following 
Castle (1994). This has the advantage of introducing high-order terms without introducing the theoretical complications of intrinsic 
anisotropy.  Implicit in this derivation is that the velocity is known a priori and that static corrections are applied.  Lastly, W is a 
convolution matrix which contains the source wavelet.  Applying these three operators in series, the block matrices Fn,Gn,Hn model the 
offset dependent reflectivity from the zero offset reflectivity, Nn applies NMO and  W convolves the offset dependent reflectivity with the 
source wavelet modeling the band limited seismic data with NMO.  The inversion of equation (1) can be thought of as three separate 
inversion problems, deconvolution, inverse NMO and AVO inversion.   
Data that has been previously NMO corrected may be input to this algorithm with a slight modification.  In processing, for stability 
reasons, the inverse of NMO is practically never done, instead its conjugate is applied (Claerbout, 1992).   NMO processing may be 
simulated by applying the conjugate NMO operator to both the left and right hand sides of equation (1) resulting in 
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where dn’ is the NMO corrected data for the nth offset.  Note that nn is not an identity matrix.  This operator is responsible for 
NMO stretch and offset dependent tuning.  By applying the inverse of this operator these artefacts can be removed.  Depending on 
the processing performed to the seismic either equation (1) or (2), may be inverted with similar results. For future reference and 
simplicity, the linear model (Equation 1 or 2 as appropriate) is written as 

TWNN

 
,Lmd =
 (3) 

where L is the linear operator, m is the unknown reflectivity vector¸ and d is the seismic data before or after NMO correction as 
appropriate. 
The regularization introduced in the next section requires that the parameters being solved for are statistically independent.  Based on 
empirical rock physical relationships this is clearly not the case for the above parameterization.  Castagna et al. (1984) showed that for 
clastics the S-wave velocity of the rock is highly correlated with its P-wave velocity.  Likewise the Gardner et al. (1974) relationship 
makes use of the fact the density and P-wave velocity are highly correlated.  Assuming Gaussian statistics, Downton and Lines (2001) 
showed that these correlations can be described by a 3×3 covariance matrix.  Other probability distributions can be mimiced using a 
suitable weighting matrix in calculation of the covariance from the well log statistics.  If it is assumed, as is typically done in 
deconvolution, that the reflectivity time samples are ergodic and independent then this covariance matrix may trivially be extended to 
N time samples resulting in a 3N×3N sparse covariance matrix Cm.  This matrix describes the correlations between the different 
variables.  A transform matrix m=Vm’ which does a change of variables to independent variables m’ is calculated by doing an 
eigenvector analysis of the covariance matrix m The eigenvectors form the transform matrix while the eigenvalues 
describe the expected variance of the tranformed variables.  Since stationarity has been assumed, there are 3 distinct eigenvalues 
σ1²,σ2², and σ

T.VVC Λ=

3² corresponding to the variance of the three transformed variables.  Under the change of variables equation (3) 
becomes  

 
,''mLd =
 (4) 

where L’=LV.  
In equation (1) or (3) both the matrices W and N are typically underdetermined or ill-conditioned. This is due to the fact the data is 
band-limited and the differential tuning introduces null spaces into the NMO operator N. Because of this, the problem needs to be 
regularized. Similar to Downton and Lines (2003) this is done by choosing a weighting function that treats certain reflection coefficients 
as being more reliable than others. Choosing a long tailed a priori distribution leads to such a weighting function. 
A long tailed distribution or sparse reflectivity may be argued for based on physical arguments. The P-wave impedance reflectivity may 
be modeled as a long tailed distribution, such as the L1 distribution (Levy and Fullagar, 1981; Shapiro and Hubral, 1999).  Under the 
change of variables the second variable is similar to the fluid factor.  The fluid factor reflectivity is sparse by its nature since it only 
responds to anomalous fluids or large changes in lithology.  The third variable is similar to a difference between the  scaled density 
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and the velocity reacting to places where the density is uncorelated to the velocity.  The reflectivity of this will be sparse as well.  After 
the change of variables in the proceeding section, the variables are independent so the resulting parameter covariance matrix is 
diagonal. Thus the three reflectivity series can be modeled by a variety of distributions including the Huber, Cauchy or Lp norm.  The 
Cauchy distribution leads to a weighting a diagonal matrix Q whose elements are defined by 

 
.

3
2'

1
2
m'

1

3
2

3
'

1
2
m'

1

3
'

1
2
m'

1

1

2
3

2
n

2
3

2
1

2
2

2
n

2
2

2
1

2
1

2
n

2
1






















≤<









+

≤<









+

≤









+

=

NnNm

NnNm

Nnm

Q

n

n

n

kk

σ
σ
σ

σ
σ
σ

σ

σ  (5) 

These weights rely on parameter estimates themselves and so must be calculated in a bootstrap fashion.  The methodology is similar 
to that of Sacchi and Ulrych (1995). 
The optimal solution is found with the aid of Bayes' theorem.  Assuming uniform uncorrelated Gaussian noise the likelihood function is 
Gaussian with the linear model is defined by Equation (4).  This is combined with the weights coming from equation (5) leading to the 
nonlinear constrained least squares solution  

 
[ ] ,'''' dLmQLL T T=+µ

 (6) 
where µ is the noise-to-signal ratio which may be estimated from the data itself.   There are two sources of nonlinearity in Equation 
(6), the estimate of the regularization parameter µ and the calculation of Q.  The matrix Q, equation (5) requires previous estimates of 
m’ to construct the diagonal weighting terms.  This must be done in a bootstrap fashion.  Since the actual inverse problem being 
solved is large, it is most efficiently solved using iterative techniques such as conjugate gradient (Skewchuk, 1994). Solving the 
inverse problem requires two nested loops. In the inner loop the conjugate gradient algorithm is used to solve Equation (6) using the 
previously calculated values of m and Q. The maximum number of conjugate gradient iterations is used as a parameter to help 
stabilize the solution (Hansen, 1998). After solving for the reflectivity the estimate of m and the covariance matrix Q is updated. 
Iteratively updating these parameters and re-estimating the reflectivity parameters constitute the outer loop. Generally a satisfactory 
sparse solution is obtained after 3 to 5 outer loops. For the first loop the inversion is run as an unconstrained inversion by setting m=0. 
Care must be taken in the first outer loop not to put too much detail in the solution or the problem will not converge. This can be 
controlled by carefully setting the maximum number of conjugate gradient iterations parameter to a value that limits resolution. 
Examples  
 
Based on the results of Downton et al. (2003) a synthetic model was constructed (Figure 1) that included a class III and IV AVO 
anomaly undergoing NMO stretch at 1.5 and 1.7 seconds,  a class III and IV AVO anomaly undergoing offset dependent tuning at 1.6 
and 1.8 seconds and density anomaly at 1.9 seconds.  The rest of the reflectors followed the mudrock and Gardner relationships.  
Noise was added to give a signal-to-noise ratio of 10:1. The NMO corrected gathers were taken through the inversion scheme, 
inverting angles up to 55 degress resulting in Figure 2.  Note that the events undergoing stretch and offset dependent tuning are well 
estimated.  The density anomaly at 1.9 seconds is acurately estimated even though it is completely uncorrelated with the velocity. 
The real data example (Figure 3) is a line shot over two Halfway anomalies.  The Halfway sand shows up as bright spots at around 
0.72 seconds.  This line was inverted using the AVO waveform inversion outlined in this paper.  The resulting density reflectivity 
differentiates between the producing pool (wells C and E) and the uneconomic low gas saturated well A.  
Conclusions  
 
This paper developed and demonstrated a three-term AVO waveform inversion that works on data with NMO stretch and offset 
dependent tuning.  Constraints are used to regularize the problem addressing the underdeterminedness and helping to stabilize the 
inversion in the presence of noise.  The algorithm is successfully demonstrated on synthetic data that exhibit NMO stretch and offset 
dependent tuning that would bias a traditional three term AVO inversion.  Density reflectivity is successfully estimated even when it is 
uncorrelated with the velocity reflectivity for signal-to-noise ratios typical for real seismic data.   
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Figure 1: Input with NMO stretch and offset dependent tuning, model from estimated parmaters and difference  

 
Fig. 2. The estimate of reflectivity (red) versus the ideal (blue).  Rp, Rs, Rd and Rfl are the P-and S-
impedance, density and fluid stack reflectivity respectively 

 
Fig. 3. Results of AVO waveform inversion. 
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