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Introduction 
 
The eikonal equation solver is widely used in seismology. Although many authors have discussed various numerical methods for 
solving the eikonal equation (e. g. Vidale, 1988, 1990; Podvin and Lecomte, 1991; and Hole and Zelt, 1995), the topic still warrants 
further treatment. In this paper I will first analyze the errors inherent in the finite difference schemes, then illustrate them via 
numerical examples. Next I will present a new implementation, which employs variable grid spacing to solve the eikonal equation 
accurately and efficiently. 
 
 
The finite-difference scheme of the eikonal equation 
For simplicity I consider 2-D here, and it is easy to extend to 3-D. The eikonal equation can be written as  
( ) ( ) 222 1 vzTxT =∂∂+∂∂  ,                                                                                                                                                     (1) 
where T  is traveltime and v  is velocity. It is not difficult to derive a numerical formula for a finite-difference scheme in case of a 
rectangular grid (i. e. x z∆∆ ≠ ). The basic formula can be written as 
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where and are traveltimes, are grid spacings in the 321 ,, TTT 4T zx ∆∆ , x and z directions respectively (see Fig. 1). If 
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14 )(2 TTvhTT −−±= ,                                                                                                                (3) 
which is the basic extrapolation formula of Vidale (1988). Vidale points out that this equation is perfect only for a plane wave with 
constant velocity. Here we show it. For simplicity again we consider Eq. (3) (i. e. hzx =∆=∆ ). In Fig, 1, we have 

vAETT += 14 , and 22 )(2 DEhAE −=                                                                                             (4) 
It is easy to prove that 

32 TTvCFDE −==                                                                                                                                 (5)  
Substituting (5) into (4), we obtain Eq. (3). 
 

Obviously, Eq. (3) is not exact if there is not a plane wave and/or a constant velocity.  
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Figure 1                                                                          Figure 2 
 
Error analysis 
 
We will analyze the errors when (a) the wave is no longer a plane wave; and (b) the velocity is not constant. 
 
(1) A constant velocity model 
First, we consider a constant velocity model and a point source. It is well known that the wave is far from a plane wave at the area 
near the source and it is approximately a plane wave at the area with the larger distance from the source. I put the accurate 
traveltimes at the dashed rectangular area with the number of grid points n from the source, and I calculate the traveltimes of the 
next two grid points from the dashed area on each of the 3 sides as shown in Fig. 2. The absolute errors (traveltime is in units of 
one grid spacing: h/v) are decrease with the number n as expected (Fig. 3). 
 

      

 
 

(2) The velocity linearly increases with depth z: V V=
In this case an analytical formulae can be used to calcu
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Fig. 4. RMS absolute errors (ms, solid line with 
stars) and RMS relative errors (%, dashed line 
with triangles) increase with the parameter k. 
 
 
 
 

Fig. 3. RMS absolute errors in traveltime of one 
grid spacing (%) decrease when the wave is 
closer to a plane wave. 
kz+0 . 
late accurate traveltimes (e. g. Telford, et al., 1976).  The traveltimes (t) are 

0 ,                                                                            (6) 
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where z is the depth, and x is the horizontal distance from the source.  The value of the k determines how far the velocity departs 
from a constant velocity. Consider a model similar to Fig. 2. Again I set the accurate traveltimes in the dashed area, and calculate 
the traveltimes from n+1 to 2n. Here I choose n=10 to reduce the errors caused by “non-plane wave” effect described above 
(thereby isolating the “variable velocity” effect presently studied), and set v0=1000m/s, h=10m. I calculate the errors for k=1 1s−  to 
30 . The results are shown in Fig,. 4. Both the RMS absolute (ms) and relative (%) errors are increasing with k. 1s−
 
The variable grid spacing method 
 
The analysis shows that the errors in the eikonal equation solver come from the both the non-plane wave and the variable velocity 
effects. Obviously both these errors would be reduced when a small grid spacing is used. To show this I consider the linearly 
increased velocity model mentioned above. The calculation area is 200 m deep and 400 m wide, and the source is set at the 
middle point of the surface. The velocity increases linearly from 2000 m/s at the surface to 8000 m/s at the bottom (i. e. 

).  I choose the initial value of grid spacing h=20m, then apply smaller grid spacing h/l, l=1 to 10 to reduce errors. The 
results are shown in Fig. 5(a) and (b). Both absolute and relative RMS errors decrease when l increases; i. e. the grid spacing 
decreases. The RMS absolute errors almost linearly increase with the grid spacing. In practice, velocity models often contain quite 
large velocity contrasts. If the velocity changes from 2500 m/s to 6500 m/s within a few grid spacings, over 40 m for example, the 
equivalent local k would be 1000 . The small grid spacing may be necessary to avoid larger errors. Using small grid spacing 
can reduce errors in travel times, but it dramatically increases computation cost especially for 3-D models. Fortunately, there is 
typically only a small portion of the seismic velocity model with the large velocity contrast, Thus the variable grid spacing method 
can be used to solve the eikonal equation accurately and efficiently. The small grid spacing is only used for the areas with the 
larger velocity contrasts, and generally the grid spacing can vary according to the local velocity contrast. Although in principle the 
small grid spacing could also used for improved accuracy in the near-source zone where the wavefronts are non-planar, in practice 
it is only necessary to use a near-source small grid in those cases where the near-source velocity field varies rapidly. In cases 
where the near-source velocities vary slowly, errors due to the near-source curved wavefront effect can easily be handled by direct 
computation of source traveltimes via analytic expressions based on a best fit constant velocity or constant gradient model (e. g., 
Aldridge and Oldenburg, 1993). 
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Fig. 5(b) RMS absolute error (ms, solid line 
with stars) and RMS relative errors (%, 
dashed line with triangles) increase with the 
grid spacing. 
 

 
 
 
 
 
 

Fig. 5(a) RMS absolute error (ms, solid line 
with stars) and RMS relative errors (%, 
dashed line with triangles) decrease when the 
number l increases. 
 

 
This variable grid spacing method in the eikonal equation solver has many applications in seismic processing. An efficient and 
robust eikonal equation solver is crucial for Kirchhoff depth migration. It is even useful for Kirchhoff time migration, because the 
traveltimes calculated by the eikonal equation can be more accurate than those obtained by the Dix equation. Moreover, using the 
eikonal equation to calculate first arrival traveltimes provides the ability to image dips beyond 90 degrees (e. g. Wu, 2002). Finally, 
the eikonal equation solver is also useful for computing traveltimes and raypaths in seismic tomography applications. 
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Conclusions 
 
The errors of the eikonal equation solver stem from both non-plane wave and variable velocity effects. The errors would be 
reduced when a small grid spacing is used. However using the small grid spacing would increase computation cost dramatically, 
especially for 3-D applications. The variable grid spacing method suggested in this paper can be used to make the eikonal 
equation solver accurate and robust without unnecessarily high computation cost.  
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