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Bad Stacking Velocities in the Presence of Anomaly and their explanation.  
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Abstract 
A depth velocity model determination is one of the most important problems in seismic processing and interpretation. A velocity 
model, beyond its initial purpose to obtain a seismic stack, is used for depth migration, AVO analysis and inversion, pore pressure 
prediction and so on. Before a well is drilled, seismic data provides the only information for the velocity. From seismic data we can 
directly determine only stacking velocities, which give us the best image in time domain. Dix’s formula gives us interval velocities in 
1-D medium. In many cases the 1D assumption does not work, especially when we have the overburden local velocity anomalies. 
Not only do they reduce post-stack image quality, but also create big difference in stacking velocity behaviour for deep seismic 
reflectors with small dips. In this paper, we will see how we can analytically describe the connection between interval velocities, 
shallow anomaly and stacking velocities. This connection will provide us with clearer understanding of so called “anomalous” 
behavior of stacking velocities. 
 

Introduction 
In the presence of a shallow velocity anomaly, we can often see an “anomalous” lateral oscillation of stacking velocities, increasing 
with reflector depth. In the 1D case, the stacking velocity is close to RMS velocity, which can be considered as a kind of average 
velocity. When we think about average velocity, we usually mean that this velocity is bounded by the minimum and maximum 
interval velocity above. The “anomalous” lateral behavior of the stacking velocity means that its value is beyond the minimum and 
maximum interval velocities. We expect the stacking velocity (many processors in everyday conversation even call it RMS velocity) 
to behave as kind of average velocity. That is, if we have a locally slow velocity in some layer, we expect to see slower stacking 
velocity and vice versa. The thicker a specific layer is, the greater is its influence on the average value. This is true if the velocity 
anomaly is in a deep layer, but if the anomaly is shallow then the stacking velocity is “spoiled” – it does not correlate with average 
velocity at all. If we have a slow shallow velocity anomaly, the stacking velocity response may show slow velocity for shallow 
horizons (which corresponds to the idea that stacking velocity is kind of average velocity above the reflector), but fast velocity for 
deep horizons (which completely contradicts this idea).  
 

Some main questions about stacking velocity 
As was described above, we often expect stacking velocity to be directly connected with some kind of average velocity over the 
reflector: “Because one wants the stacking velocities to approximate real velocities”, Blackburn (1980, p. 1466). When we don’t 
see this connection (and we don’t see it when in the presence of shallow overburden velocity anomaly) we consider this as error in 
the stacking velocity. We can see this word “error” in the name of the papers (Blackburn, 1980) or in the papers: “In the presence 
of velocity anomalies, stacking velocities show systematic errors ” Armstrong et al. (2001, p. 81). This “anomalous” behavior even 
leads to the statements, that “Stacking velocities, as derived from NMO correction of CDP gathers, need have no physical 
significance to the true velocity distribution below the gather location” Blackburn (1980, p.1466).  

 
Fig.1 Problem with stacking velocity      Fig. 2 a. Stacking velocity   Fig. 2b.Dix’s interval velocity 
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The connection between stacking and interval velocities has been considered over the last 50 years by many authors (the review 
of this problem can be found in Bergler et al, 2001) but the formulae (except for the medium with homogeneous horizontal layers) 
are quite complicated and require zero-offset ray parameters, which have to be numerically calculated. Fig. 1 is taken from the 
paper of Armstrong et al, (2002) and the text under this figure says: “A near-surface, slow-velocity anomaly introduces push-down 
in time at the target horizon on a CMP stack, but the stacking velocity response shows a fast velocity inside the anomaly and slow 
velocity on either side of the anomaly.” Looking at this picture, we can ask ourselves a question – why do we have this strange 
behaviour of stacking velocities, which seems not to correspond with average velocity at all? Fig. 2a shows typical behavior of 
stacking velocity in the presence of shallow anomalies. If we use Dix’s formula to calculate interval velocities, we will have the 
velocity grid, shown in the fig. 2b.  It’s obvious that in this case we cannot use Dix’s formula. The question is “why”? 
 

We can ask more questions, such as: 
(i)     Should we consider this “strange” behaviour of stacking velocities as an error? 
(ii)    If it’s not an error, what kind of connection can we expect between the stacking velocity and interval velocities. 
(iii) Is this behaviour really caused by non-hyperbolic moveouts, as we can find in some papers “This follows because the 

origin of the anomalous response is non-hyperbolic moveout within CMP gathers introduced by time delays caused 
by the velocity anomalies”, Armstrong et al. (2001, p. 82) or is there another reason? 

(iv)   Can we use these “errors” to recover shallow velocity anomaly anomalies and to build a depth velocity model?  
 

All these questions (and some others, related to this problem) have answers. One can try to find the answers through modeling 
different situations (Blackburn, 1980, Pickard, 1992) and make some general rules, but model studies show that this is not an easy 
task (Blackburn, 1980). To answer all these questions, we will use an explicit formula, which connects interval and stacking 
velocities when we have a lateral changes in the velocity. Using a method, developed by Blias (1981) and Blias (1987), the explicit 
formulae, connecting laterally changing interval velocities to stacking velocities, have been obtained. This formula is valid for an 
arbitrary number of anomaly layers, but for the sake of simplicity (and space) sake, we will write this formula when we have one 
layer with the velocity anomaly. 
First let us know that we can use two descriptions of the lateral velocity anomaly. The first description uses two homogeneous 
layers, separated by a curvilinear boundary, as in fig. 2. We also can use a model with one layer with laterally changing velocity 
v(x). We will consider both models. For the first model the explicit connection between NMO velocity and interval velocities is given 
by the formula (Blias, 1981): 
 

   1/ VNMO
2 = (1/ VRMS

2) [1 + (1/vm - 1/vm+1) Fm′′(x) amn]      (1) 
where  

      n   n 

    amn = ( Σ hivi)2 / ( Σ hivi) .             (2) 
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Here VNMO is NMO velocity (parameter from hyperbolic approximation for relatively short offsets), Fm(x) is a curvilinear boundary 
between two layers, which creates shallow velocity anomaly, vm is interval velocity and hm is a thickness of m-th layer; n is a 
horizontal reflector number. The exact value of NMO velocity depends on the acquisition geometry. 
For the second kind of shallow velocity anomaly description, we can derive an analogous formula: 
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where  

n     n   

        bmn ≈  (Σ hivi)2 / ( Σ hivi)          (4) 
                  i=m      i=1 

 

These formulas allow us to answer most of the questions (i) – (iv) above. First of all, formulae (1) and (3) show that the difference 

between stacking and interval velocities depends on the non-linear lateral anomaly changes (vm′′). That is, stacking velocities 
depend on the values of amn and bmn. Scalars amn and bmn are similar and have similar behavior – the value of these scalars 
depend on the position of this layer in the ground (number m) with respect to the reflector (number n). Formulae (2) and (4) show 
that with n increasing (reflector depth is increasing), the numerator increases as the second power of the sum and denominator 
only as the first power - that is more slower. It explains why the influence of the velocity anomaly increases with greater reflector 
depth. If the velocity anomaly is close to the reflector (m is close to n) then the nominator in amn and bmn are small and stacking 
velocity is close to the RMS velocity. With increasing the reflector depth with respect to the anomaly depth, numbers amn and bmn 
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also increase, which implies bigger difference between the stacking and RMS velocities. First scalar in (1) and (3) gives us RMS 
velocity, so when amn and bmn are small (and they are small when the reflector depth is close to the anomaly depth), so stacking 
velocity lateral changes (behaviour) correspond to lateral average velocity changes: slow velocity anomaly produces slow stacking 
velocity. For the deep reflectors, lateral changes of the second scalar in (1) and (4) become more important than the first one, and 
stacking velocities repeat the second-order derivative of the anomaly. That is, positive second-order derivative in the centre of 
anomaly on fig. 2 produces positive stacking velocity anomaly. At the end of the shallow velocity anomaly, negative second-order 
derivative implies negative velocity anomaly for stacking velocities. 

Let us shortly describe the implications of the formulae (1) – (4) and answers for all the questions. The answer for the first question 
(Should we consider this “strange” behaviour of stacking velocities as an error?) in no. This follows from formulae (1) and (3) and 
the above paragraph. It means that we should not expect direct connection between stacking and average velocities, because of 
the second term in the formulae (1) and (3), which contain the second-order derivatives of the velocity anomaly. We can illustrate 
them with fig. 3a-e. Fig. 3a shows a velocity model with two shallow anomalies. The first anomaly is described with the curvilinear 
boundary (black lines), for the second one we use lateral changes in the first interval velocity (red lines). Question (ii) is also 
answered. The answer for the question (iii) depends on the relation between the velocity anomaly and the spread length. If the 
spread length is less then the shallow velocity anomaly length then we have non-hyperbolic NMO moveout but this is not the 
reason, contrary to what is claimed in Armstrong et al. (2001, p. 82). Fig. 3 and 6 confirm this.  

 

Fig. 3. Illustration to the formulae (1) and (3) 

Fig 3b shows RMS velocities, which correspond with average velocity. Fig. 3c plots second scalars in the formulae (1) and (3) for 
each reflector, which are the second-order derivatives of the shallow interval velocity with scalars amn and bmn. Fig. 3e shows 
stacking velocities: the result of the formulae (1) and (3) – the product of the first (RMS) and the second (second-order derivatives) 
scalars in (1) and (3) and their sum. For the shallow reflector the scalars amn and bmn are small and stacking velocity correlates 
with the RMS velocity. For deeper reflectors the values of amn and bmn increase, which leads to the oscillation of stacking velocities 
and these oscillations, correspond to the second-order derivative of the shallow anomaly. Formulae (1)- (4) also explain why we 
have inversion of stacking velocities while going from the shallow reflectors to the deep ones. For a shallow reflector the second 
term is small and stacking velocities correlate with the RMS, that is, average velocity. Slow shallow anomaly corresponds to slow 
stacking velocity. The deeper we go, the less the influence of the average velocity (see Fig. 3b) and the bigger is the role of the 
second term (fig. 3B,d). But the maximum of the shallow velocity anomaly corresponds to the minimum of its second derivative. 
 
The last question has the answer “yes” but this goes beyond the scope of the paper. I can only mention, that Dix’s formula gives 
interval velocity with high accuracy if the velocity anomaly is in the estimated layer itself. This directly follows from formulas (2) and 
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(4). If m = n (anomaly is in the estimated layer) then amn and bmn are small and the second term in (1) and (3) is close to (1). This 
implies that stacking velocity is very close to the RMS velocity and we can apply Dix’s formula. If the estimated layer is much 
deeper than the velocity anomaly (n>>m) then the coefficients amn and bmn are big and the second term in (1) and (3) differs from1. 
It implies that the stacking velocity are far from the RMS velocities and Dix’ formula gives big errors.  
 

Using formulas (1) – (4), it can be shown (Blias, 1988) that in the case when the anomaly is described with a laterally varying 
velocity velocity vm, Dix’s formula gives the value wn: 

 n 

     wn = vn [ 1 + hmvm′′(Σ hivi) / vm
2 ]          (5) 

        i=m+1 

Formula (5) shows that the difference between interval velocity vn and its Dix’s estimation wn depends on the non-linear anomaly 

changes (the second order anomaly derivative vm′′), anomaly thickness hm and the distance between the anomaly and the 
reflector (hm+1vm+1 + hm+2vm+2 +…+ hnvn). With increasing the vertical distance between the anomaly and the reflector, the sum in the 
parentheses increases, which implies bigger difference between the interval velocity vn and it’s Dix’s estimation wn. Figures 4 - 6 
illustrate this connection. Fig. 6b shows the difference between NMO function and its hyperbolic approximation. For deep 
boundaries it is less than 2 ms but stacking velocity for these reflectors has the biggest oscillation. It means that anomalous 
behavior of stacking velocities is not caused by non-hyperbolic moveout but by non-linear velocity anomaly cahnges.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Boundaries (a) and interval velocities (b) Fi. 5. Zero-offset time (a) and NMO velocity (b)  Fig. 6. Interval and Dix’s velocities  

(a) Non-hyperbolic difference (b) 

Conclusions.  
Formulae (1) – (4) give an explicit connection between stacking and RMS velocities. They explain anomalous (far from expected average) 
behavior of stacking velocity in the presence of overburden velocity anomalies. The influence of the velocity anomaly depends on its depth, the 
reflector depth, which define the numbers amn and bmn in the formulae (1) – (4) and non-linear lateral changes. These non-linear changes (the 
second-order derivative with scalars, increasing with reflector depth) in the second term in formulae (1) and (3) just produce “strange” behaviour 
of stacking velocities. For the deep reflectors, stacking velocities repeat the second-order derivative of the shallow anomaly because of big 
values for the scalars amn and bmn. For the shallow reflectors, these scalars are small and stacking velocities are close to RMS velocities. From 
(1) – (4) it also follows that to calculate accurate interval velocities in deep layers, we have to know not only local shallow velocity anomalies but 
also to the second-order derivatives with high accuracy and this is not an easy problem. Let us mention that for correct time-to-depth 
transformation it’s enough to know anomaly velocity lateral changes and not their second derivatives. 
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