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Summary 
 
Gaussian beam migration (GBM) (Hill, 1990, 2001) is an elegant, accurate, and efficient depth migration method. It has the ability to 
image complicated geologic structures with fidelity exceeding that of single-arrival Kirchhoff migration and approaching that of wave-
equation migration. In fact, its accuracy can exceed that of most wave-equation migrations in imaging very steep dips, especially in 
three dimensions and especially in the presence of anisotropy. 

Poststack GBM is efficient, but a naïve implementation of prestack GBM can be relatively inefficient. Hill’s (2001) implementation of 
prestack GBM takes advantage of symmetries available in common-offset, common-azimuth acquisition geometries to provide an 
extremely accurate method that is far more efficient than the naïve implementation. Unfortunately, different acquisition geometries, 
such as orthogonal land and marine bottom-cable geometries do not easily accommodate the requirements of common-azimuth 
migration. For these geometries, it might be more natural to perform migration on individual common-shot or common-receiver 
records. 

In this abstract, I adapt Hill’s (2001) method to common-shot migration. The common-shot migration described here loses some 
accuracy compared with Hill’s method, in the sense that it doesn’t handle multiple arrivals as well. It is possible to overcome this 
problem (Gray, 2005), but the method described here will be sufficient for the purposes of this abstract, which is to point out some 
advantages of migrating common-shot records. In practice, this slight loss of accuracy needs to be weighed against (1) the difficulties 
(in some geometries) of obtaining regularly sampled regularly sampled common-offset, common-azimuth records for migration, and 
(2) the difficulties in regularizing common-offset, common-azimuth data for the premigration slant stack when surface elevations and 
velocities vary rapidly. 

Poststack Gaussian beam migration 
 
GBM is a variant form of Kirchhoff migration that operates in the frequency-wavenumber, as well as the time-space, domains, and 
allows for multipathing in a natural way. Where Kirchhoff migration images a single input trace onto all image locations, GBM first 
groups a number of nearby input traces together by slant-stacking, then images each slant-stacked trace onto a restricted set of 
image locations, the image locations determined by a particular ray direction. The Gaussian beam raytracing method provides 
amplitude and phase information for these image locations.  Figure 1 (Hale, 1992) illustrates the procedure for poststack migration.  
Input traces from CMP locations near 5 km  (the beam center) have been slant stacked corresponding to a particular ray takeoff 
angle, then imaged according to amplitude and time information within the Gaussian beam for that ray angle, yielding a partial 
migration. To complete the image, accumulate all the partial migrations, summing over ray angles for each beam center location, then 
summing over beam center locations. Migrating a limited number of local slant stacks over a limited number of initial directions makes 
GBM efficient, and assuring that the number of directions is adequate to sample the entire wavefield makes it accurate.   

 

 

 

 
 
 
 
 
 
 
 
 

Figure 1.  Poststack Gaussian beam migration of a single slant-stacked trace in a single direction. From Hale (1992). 

Gaussian beams complicate the complete picture considerably. Gaussian beams have traveltimes and amplitudes that are both 
complex-valued.  In fact, it is the imaginary part of the traveltime within the beam, not the taper applied to the local slant stack of the 
input traces, that causes the decay of the migrated image away from the central ray in Figure 1. The complex-valued amplitudes and 
traveltimes complicate the full description of GBM, but they also provide a regular migration Green’s function. In contrast, the Green’s 
functions used in standard Kirchhoff migration become singular at caustics, requiring ad hoc fixes. A wide latitude of choices exists for 
initial conditions for Gaussian beams; Hill’s formulation of GBM uses Green’s functions that are planar at their take-off points on the 
Earth’s surface. 
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In addition to the complex-valued ray quantities, the traveltime tables used in GBM are considerably different from those used in 
standard Kirchhoff migration. Standard Kirchhoff migration uses tables of traveltimes from point sources.  Each table contains the 
traveltimes from a station location to all image locations. In a constant-velocity Earth, contours of equal traveltime sweep out spherical 
shells in three dimensions. In an Earth with considerable velocity variation, single-arrival traveltime tables cannot accommodate 
energy that travels to an image location along more than one path.  In GBM, the point-source response is built as a superposition of 
plane-wave responses, and the plane-wave traveltime tables are collimated, as in Figure 1. If several beams from the same CMP 
location strike the same image location, GBM accumulates several arrivals into that location in a natural fashion. 

Poststack GBM is thus a generalization of Kirchhoff migration, and it improves upon Kirchhoff migration in its natural handling of both 
wavefield caustics and multi-valued traveltimes. 

 
Prestack Gaussian beam migration  
 
Once we understand the mechanics of poststack GBM, we can think of a naïve generalization to prestack migration very easily. For a 
given gather of input traces, perform local slant stacks and then image the local slant stacks along beams from the source and 
receiver locations. In a common-shot gather, for example, the beam center locations are a subset of all the receiver locations, and the 
ray parameters correspond to ray directions from each beam center location. The source location is also a beam center location, and 
each beam from the source location and each beam from each of the receiver beam center locations contributes part of the final 
image. For each receiver beam center location, adding all these angular contributions gives the total image from the location, and 
adding the contributions from all the receiver beam center locations gives the migrated image of the shot record. The computational 
structure for this prestack migration method is: 

For each receiver beam center location 

   Tapered local slant stacks (using local surface velocity)      
        of input traces over several ray parameters                
   For each ray parameter from the receiver beam center 
       For each ray parameter from the source location 
          For all image points in the aperture 
             Accumulate the slant-stacked input trace into the  
                  image 
          End loop over image points 
      End loop over source ray parameters 
   End loop over receiver ray parameters 
End loop over receiver beam centers 
 
This prestack migration algorithm, while extremely accurate, is not particularly efficient. By performing a saddle point analysis of the 
behavior of the downward continued source and receiver wavefields at image points, Hill (2001) has derived a very efficient version of 
this algorithm that collapses some of the computational loops (integrals in the continuous formulation). The saddle point analysis relies 
on the fact that the strength of the Gaussian beam wavefield associated with a raypath decays exponentially away from the raypath, 
as in Figure 1. The analysis confirms the intuitive observation that raypaths from the source and receiver locations of a beam center 
will contribute significantly to the migrated image at a point only if both raypaths pass close to that point. The exponential decay of the 
wavefield strength is determined by the imaginary part of the traveltime within the beam, so raypaths whose total (source plus 
receiver) imaginary traveltimes are small (i.e., small total decay) will contribute the dominant part of the migrated image. In common-
offset migration, the ray parameters ps and pr from the source and receiver locations of a beam center are combined as the midpoint 
ray parameter pm = pr + ps, so these dominant contributions can be found by scanning all values of offset ray parameter ph = pr – ps to 
obtain the combination of ps and pr that minimizes the imaginary part of the total traveltime. This scan can be performed over a 
coarse-grid subset of the migration grid, with values interpolated onto the migration grid, because the traveltime tables are well-
behaved (again, see Figure 1). With the (efficient) scan replacing the innermost loop of the migration program, the computational 
structure becomes 

For each midpoint beam center location 
   Tapered local slant stacks 
   For each midpoint ray parameter 
       For each coarse-grid image point 
           Scan over offset ray parameters for the minimum 
                 value of imaginary time 
       End loop over coarse grid of image points 
       For all image points in the aperture 
 
          Accumulate the slant-stacked input trace into the  
                image using times obtained from the scan 
       End loop over image points 
   End loop over midpoint ray parameters 
End loop over midpoint beam centers 
 
This structure differs from the preceding one in that its innermost loop, the scan, is performed only over a coarse-grid subset of the 
entire migration aperture. It is therefore much more efficient and, as Hill has shown, very accurate.   
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Common-shot Gaussian beam migration 
 
The efficient migration method just described is very well suited for input data sorted into common-offset, common-azimuth volumes. It 
doesn’t appear to be as well suited for different types of input data volume, such as wide-azimuth surveys recorded by ocean bottom 
sensors. For such data, it might be more efficient to migrate these wide-azimuth data volumes directly, without an intermediate sort to 
sparsely populated common-offset, common-azimuth bins. 

A separate issue arises with prestack GBM of land data where velocity and/or topography vary rapidly along the recording surface. 
The local slant stack of a common-shot record with a beam center at a particular receiver location depends on values of the velocities 
near that location. By contrast, the local slant stack of a common-offset record with a beam center at a particular midpoint location 
depends on velocity values near both the source and receiver locations. It will then be harder to control the slant stack of the 
common-offset record to behave as desired, especially when the velocities near the source and receiver locations are very different. 
Likewise, it is harder to perform suitable elevation corrections, before slant stack, for traces in a common-offset gather than for traces 
in a common-shot gather.   

The issue of velocity and topography is not insoluble for common-offset migration, but the solutions are not straightforward, and they 
present technical compromises that may reduce the quality of the final migrated image. Similarly, the common-shot algorithm whose 
structure I describe next presents a technical compromise. In most cases the compromise is minor, and in most cases the algorithm 
produces depth-migrated images whose quality is comparable to that of common-offset migration. 

To adapt Hill’s efficient common-offset migration to common-shot records, I replace midpoint with receiver, and offset with source, in 
the computational structure: 

For each receiver beam center location 
   Tapered local slant stacks 
   For each receiver ray parameter 
       For each coarse-grid image point 
           Scan over source ray parameters for the minimum 
                 value of imaginary time 
       End loop over coarse grid of image points 
       For all image points in the aperture 
          Accumulate the slant-stacked input trace into the  
               image using times obtained from the scan 
       End loop over image points 
   End loop over receiver ray parameters 
End loop over receiver beam centers 

This computational structure is an exact analogy to the one for efficient common-offset migration, but it has a disadvantage in its 
ability to handle multipathing. In the scan, a particular receiver beam is fixed, and it searches for the source beam with the minimum 
value of imaginary time. Moving from one image location to another within a given receiver beam can result in jumps in selected 
source beam, sometimes with associated jumps in the real part of source traveltime. Since the receiver beam direction is fixed, the 
total (source plus receiver) traveltime can jump, causing the same sort of branch jumping that we often see with single-arrival 
Kirchhoff migration. For common-offset migration, both source and receiver beam directions change as we move over image locations 
during the scan, and changes in the real part of source traveltime are likely to be compensated by changes in the real part of receiver 
traveltime. 

This common-shot implementation thus handles multiple arrivals correctly from the receiver side, and sometimes incorrectly from the 
source side. So we can expect its quality to lie between that of (single-arrival) Kirchhoff migration and wave-equation migration, 
except in situations presenting very steep dips or anisotropy. Typically, however, its quality is closer to that of common-offset GBM 
than to that of Kirchhoff migration, and the example below illustrates its superiority over Kirchhoff migration. 

An example 
 
Figure 2 shows a 2-D structural cross section typical of the Foothills of the Canadian Rockies. Topography varies approximately 900 
m along the cross section; high-velocity thrust sheets pierce the surface next to low-velocity layers, with a total velocity contrast of 
6000 / 2500; and the subsurface is structurally complex with deep hydrocarbon targets. Figure 3 shows an imaging comparison 
between Kirchhoff migration and GBM of shot records. The Kirchhoff migrated image is adequate. Still, the GBM image is clearly 
superior. Overall, it has a cleaner appearance, which is characteristic of images from wave-equation migration. Figure 4 gives a partial 
explanation for the imaging differences. This figure shows impulse responses of both migration operators, for a single input spike on a 
near-offset trace whose surface location is between the high-velocity thrust sheets. Where the single-arrival Kirchhoff operator has run 
into difficulties near the bottom of the migration smile, the GBM operator has placed overlapping arrivals. (The low-amplitude arrivals 
are due to the input trace contributing to a few overlapping beam centers.) Also, the amplitudes are fairly uniform along the Kirchhoff 
impulse response, while the GBM operator has placed less energy along certain parts of the curve. The branch jumping of the 
Kirchhoff operator tends to add random noise to the image, and the uniform amplitudes of the Kirchhoff operator tend to produce 
migration smiles. 
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            a       b           c 
Figure 2. (a) Portion of a Canadian Foothills structural cross section, showing significant topographic variations, rapid near-surface 
velocity variations, and significant subsurface structural complexity.  (b) Kirchhoff migrated image.  (c) Common-shot Gaussian beam 
image. 

              
                       a                                       b 
Figure 3. Migration impulse responses: (a) Kirchhoff migration; (b) Common-shot Gaussian beam migration. 

 
Conclusions 
 
The common-offset GBM method presented by Hill (2001) is ideal for marine streamer data, but it is less than ideal for other recording 
geometries containing a wide range of azimuths, or with a wide range of surface elevations and rapid near-surface velocity variations. 
Here I have shown that common-shot GBM can be applied to data recorded within these other geometries.   

This method is a straightforward adaptation to Hill’s method to common-shot records; as such, it doesn’t handle multiple arrivals as 
well as its common-offset counterpart. This shortcoming can be overcome with some modifications to the algorithm. Rather than 
describe these in detail, I have tried to describe GBM in general terms and to show that it is feasible, and sometimes desirable, to 
perform GBM on common-shot records. 
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