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Abstract 
Kinematic and dynamic raytracing in inhomogeneous, anisotropic media has been traditionally formulated in terms of elastic 
parameters. Such a formulation is complicated and inefficient for computation as it requires solving an eigenvalue problem at each ray 
step.  It also requires that a medium be specified with elastic parameters. This is inconsistent with the common practice in seismic 
data processing where anisotropy is usually described with Thomsen parameters. This inconsistency may result in ambiguity in 
specifying the elastic parameters. To overcome these difficulties, we have reformulated the kinematic and dynamic raytracing 
systems in terms of phase velocity. The new formulation is much simpler and computationally more efficient than the previous elastic 
parameter based formulations since solution of the eigenvalue problem at each ray step is no longer required. The efficiency of the 
dynamic raytracing system is further enhanced  by using a newly proposed nonorthogonal ray-centered coordinate system. Since the 
medium for raytracing is now specified with phase velocity, the possible ambiguity in specifying elastic parameters is also eliminated. 
The kinematic and dynamic raytracing systems developed in this study thus provide a useful and efficient tool for seismic modeling 
and imaging in anisotropic media, especially for the transversely isotropic and orthorhombic media where simple analytical 
expressions for phase velocity have been derived by Thomsen (1986) and Tsvankin (2001), and the integration of the ray tracing 
systems can be carried out relatively inexpensively using these expressions.  
 
Introduction 
Kinematic and dynamic raytracing in inhomogeneous, anisotropic media is an essential building block for seismic modeling and 
imaging with ray methods. Kinematic raytracing is required for traveltime modeling while dynamic raytracing is needed for ray 
amplitude calculation. The latter can also be used to construct Gaussian beams along a ray.  Alkhalifah (1995), for example, has 
employed this technique for anisotropic Gaussian-beam depth migration. Kinematic raytracing in anisotropic media has traditionally 
been formulated in terms of elastic parameters (Cerveny, 1972; Kendall and Thomson, 1989). Such a formulation is, however, 
physically not intuitive and computationally cumbersome (Cerveny, 1989). Moreover, it requires a medium to be specified with elastic 
parameters. The common practice in seismic data processing, on the other hand, is to describe anisotropy with Thomsen parameters. 
This inconsistency may cause problems in medium specification. For example, it may result in ambiguity in specifying elastic 
parameters for P-wave imaging in weak transversely isotropic (TI) media. The elastic parameter based formulation for anisotropic 
dynamic raytracing is even more complicated as it now involves differentiation of kinematic ray equations with respect to ray 
parameters (Hanyga, 1986; Cerveny, 2001). The purpose of this study is to formulate the kinematic and dynamic raytracing systems 
in anisotropic media in terms of phase velocity. This formulation overcomes some of difficulties of the elastic parameter based 
formulation, and is especially useful for TI and orthorhombic media where simple analytic expressions for phase velocity have been 
derived in terms of the Thomsen parameters (Thomsen, 1986; Tsvankin, 2001). 

Kinematic raytracing system 
The kinematic raytracing equations in anisotropic media have been derived by Cerveny (1972); we summarize here only the results 
needed for this study. We start with the frequency-domain equation of motion in inhomogeneous, anisotropic media:  
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where iu is displacement, ijklc are the elastic parameters, ρ is the density, and ω is the angular frequency. Throughout this study we 

will follow the convention that a lowercase subscript takes the values of 1, 2, and 3 while an uppercase subscript takes only the values 

of 1 and 2. In the zero-order ray method, we seek an approximate solution to (1) in the form of 
)()(),( ixi

ikik exUxu ωτω = , where 

)( ik xU  and )( ixτ are, respectively, the amplitude and traveltime along the ray. Substituting this ray solution into (1) and letting 

∞→ω yields the Christoffel equation: 

( ) ,0=−Γ kjkjk Uδ         (2) 

where the Christoffel matrix liijkljk ppa=Γ with the density normalized elastic parameters ,ρijklijkl ca =  and the slowness vector 

ii xp ∂∂= τ . Equation (2) is an eigenvalue problem and its eigenvalues take the form: 

1),( =ii pxG          (3) 
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which solves the eigenvalue equation 

( ) ,0=−Γ kjkjk gGδ         (4) 

where kg is the normalized eigenvector and often referred to as the polarization vector. Multiplying (4) with jg and taking into 

account that ,1=kk gg we obtain 

.kjliijklkjjk ggppaggG =Γ=        (5) 

Since ,τ∇=p  equation (3) is a nonlinear first-order partial differential equation for the phase function or eikonal )( ixτ which 

describes propagation of a P- or S-wave wavefront. This eikonal equation can be solved using the Hamiltonian (Cerveny, 1972) 
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yielding the kinematic raytracing system for P or S waves: 
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Equations in (7) are complicated and inefficient for computation as they require solving the eigenvalue problem (4) at each ray step. 
Efforts have been made to simplify equations (7). Cerveny (1989), for example, has found that (7) can be greatly simplified by using 
factorized anisotropic media, but such a medium requires that the relative spatial variations be identical for all elastic parameters, 
limiting the application of this approach for inhomogeneous media. Equations (7) also require the medium to be specified in terms of 
elastic parameters. This may result in ambiguity in specifying parameters, for example, for the widely used weak TI media. For P wave 
imaging in such a medium, usually only vertical P-wave velocity 0α and Thomsen parameters δ and ε are estimated from data. 
Determination of the elastic parameters from parameters εα ,0 and δ , on the other hand, requires explicit knowledge of S-wave 
vertical velocity .0β  

To overcome these difficulties, we reformulate the ray equations in (7) in terms of phase velocity in the same way as the ray equations 
in isotropic media are formulated (e.g., Zhu and Chun, 1994). The only difference is that the phase velocity in isotropic media is equal 
to the group velocity and is simply referred to as velocity. To accomplish this, we first note that Geoltrain (1989) has shown that the 

group velocity for energy propagation along the ix direction is given by .kjlijkli ggpaV = Thus equation (7a) can be rewritten as 

,ii Vddx =τ showing that wave energy propagates along ray x = (x1, x2, x3). To simplify equation (7b), we take into account the fact 

that the eigenvalue G in (5) and its derivative ixG ∂∂ are both homogeneous functions of the second degree in .ip  This leads to  
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where in  is the unit vector along the slowness vector ip and ),( ii nxvv =  is the phase velocity.  A substitution of the second 

equation in (8) into (7b) enables us to rewrite the kinematic raytracing system (7) in terms of phase velocity: 

ii Vddx =τ          (9a) 

ii xvddp ∂∂−= lnτ         (9b) 

where group velocity iV is calculated from phase velocity with the formulae given, for example, by Tsvankin (2001).  

The ray tracing system in (9) is simpler than that in (7) and takes the same form as its counterpart in isotropic media except that the 

right-hand side of (9a) is now given by iV  instead of iv as in isotropic media, showing that wave energy in an anisotropic medium no 
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longer propagates along the direction of the slowness vector due to the angular dispersion induced by the anisotropy. System (9) is 
also computationally more efficient than (7), especially for TI and orthorhombic media as the derivatives in (9) can be evaluated 
quickly with the expressions for phase-velocity given by Thomsen (1986) and Tsvankin (2001). Solution of eigenvalue problem (4) at 
each ray step is no longer needed. As the medium for raytracing is now specified with phase velocity, the ambiguity problem in 
specifying elastic parameters for weak TI media is eliminated. 

Dynamic raytracing system 
Dynamic raytracing was originally proposed for ray-amplitude calculation (Cerveny, 1972; Kendall and Thomson, 1989). Since then, it 
has found many other applications in seismic modeling and imaging (e.g., Alkhalifah, 1995; Cerveny, 2001). For example, it has been 
used to construct Gaussian-beam solutions to equation (1). Dynamic raytracing equations in anisotropic media are commonly 
expressed in Cartesian coordinates (e.g., Cerveny 1972). This leads to a system of six linear first-order ordinary differential equations. 
For many applications, it is convenient to use ray-centered coordinates. The dynamic raytracing system also takes the simplest form 
in such coordinates, reducing the number of differential equations in the system from six to four. Here we will first formulate dynamic 
raytracing equations in terms of phase velocity in Cartesian coordinates, and then transform them to a ray-centered coordinate 
system. 

Consider the ray coordinates ),,( 21 τγγ where 1γ and 2γ are the ray parameters that specify a ray and τ is the traveltime along the 

ray. The dynamic raytracing system in Cartesian coordinates can then be obtained by differentiating the ray equations in (9) with 
respect to the ray parameters. This gives  

,/, jijjijijijjiji PDQCddPPBQAddQ −−=+= ττ    (10) 

where γ∂∂= ii xQ , γ∂∂= ii pP , and γ represents 1γ or .2γ The coefficients ijijij CBA ,, and ijD  are given by 

jiijjiij pVBxVA ∂∂=∂∂= ,      (11a) 

.ln,ln 22
jiijjiij pxvDxxvC ∂∂∂=∂∂∂=     (11b) 

Ray-centered coordinates in anisotropic media ),,( 21 τyy have been used by Hanyga (1986) and Cerveny (2001) to derive dynamic 

raytracing equations. The coordinates are defined along a reference ray, often referred to as the central ray. Coordinate τ is the 

traveltime along the central ray and coordinates 1y  and 2y lie in the plane tangential to the wavefront at ray point .τ Their 

corresponding basis vectors are ),,( 321 eee with 

 ).,,( 3213 VVV=e         (12a) 

The ray-centered coordinates in anisotropic media are nonorthogonal as the ray is no longer perpendicular to the wavefront as it is in 
an isotropic medium. Different approaches have been used by Hanyga (1986) and Cerveny (2001) for defining the plane basis 
vectors .Ie As an alternative, we define them along the central ray by the differential equations 

.)( pee vvdd II ∇•=τ        (12b) 

Equations in (12b) are the same as those used by Popov and Psencik (1978) for defining the plane basis vectors of the ray-centered 
coordinates in isotropic media. Compared to the previous choices by Hanyga (1986) and Cerveny (2001), the ray-centered coordinate 
system defined by (12) has the advantage in that it reduces to the ray-centered coordinate system described by Popov and Psencik 

(1978) in an isotropic medium.  Moreover, its plane basis vectors ),( 21 ee are orthonormal in the tangential plane and can therefore 

be determined by integrating just one of them along the central ray. 

Using the definitions of the basis vectors given in (12), the transformation matrix from the ray-centered coordinates to the Cartesian 
coordinates ijT  can be written as 

,, 33 iiiKiiK VeTeT ===        (13) 

where Kie are the Cartesian components of basis vectors Ke with K = 1, 2. We also denote the slowness vector in this ray-centered 

coordinate system by .II yq ∂∂= τ Using the transformation matrix (13) and its inverse, and following the approaches used by 

Hanyga (1986) and Cerveny (2001) for deriving their the dynamic ray equations in the ray-centered coordinates, we obtain from (10): 
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,/, JIJJIJIJIJJIJI PDQCdPdPBQAdQd −−=+= ττ    (14) 

where γ∂∂= II yQ , .γ∂∂= II qP  The coefficients in (14) are given by 

IJIJIJIJIJ qVBpyvvqyvA ∂∂=∂∂−∂∂∂∂= ,)()ln(    (15a) 

JIJIIJJIIJ pyvvqyvDyyvvC )()ln(,21 ∂∂−∂∂∂∂=∂∂∂= −
,  (15b) 

where IV  and Ip are, respectively, the components of the group velocity vector V and slowness vector p in the ray-centered 

coordinate system. The dynamic raytracing system in (14) consists of four linear first-order ordinary differential equations and is 

similar to that in isotropic media except that it contains two extra terms with respective coefficients IJA and IJD due to the effects of 

anisotropy. For an isotropic medium, these coefficients vanish and (14) reduces to the well-known dynamic raytracing system in the 
isotropic ray-centered coordinates (Popov and Psencik, 1978). 

Dynamic raytracing systems (10) and (14) are much simpler and computationally more efficient than those formulated in terms of 
elastic parameters (e.g., Cerveny, 1972; Hanyga, 1986; Kendall and Thomson, 1989) since the elastic parameter based formulations 
involve differentiation of the complicated functions on the right-hand sides of equations (7) with respect to ray parameters. Evaluations 
of the right-hand sides of dynamic raytracing systems in (10) and (14), on the other hand, are relatively simple, especially for TI and 
orthorhombic anisotropic media where simple analytic expressions for phase velocity have been derived by Thomsen (1986) and 
Tsvankin (2001).   

Conclusion 
We have developed new systems for kinematic and dynamic ray tracing in inhomogeneous, anisotropic media. Formulated in terms of 
phase velocity, these systems are simpler and computationally more efficient than previous elastic parameter based raytracing 
systems (e.g., Cerveny, 1972; Hanyga, 1986; Kendall and Thomson, 1989; Cerveny 2001), especially for the dynamic raytracing 
system. The previous dynamic raytracing systems involve differentiation of the complicated functions on the right-hand sides of 
equations (7) with respect to ray parameters while systems (10) and (14) require only simple evaluation of the derivatives of phase 
and group velocities. The new kinematic and dynamic systems also have the advantage in that the medium used for raytracing is now 
specified with phase velocity, eliminating the need to calculate elastic parameters from Thomsen parameters and hence the possible 
ambiguity in specifying elastic parameters for P-wave imaging in weak TI media.  

The efficiency of our dynamic raytracing is further enhanced by the introduction of the nonorthogonal ray-centered coordinate system 
(12). Determination of the plane basis vectors of this coordinate system requires only a single integration along the central ray, and 
the number of dynamic ray equations in the coordinate system reduces from six to four. This dynamic raytracing system, coupled with 
kinematic ray equations in (9), thus provides an efficient and useful tool for seismic modeling and imaging in anisotropic media. These 
systems are especially useful for the TI and orthorhombic media where the right-hand sides of equations in (9) and (14) can be 
evaluated relatively inexpensively with the analytic expression for phase velocity given by Thomsen (1986) and Tsvankin (2001).  
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