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Abstract

Kinematic and d¥]namic raytracing in inhomogeneous, anisotropic media has been traditionally formulated in terms of elastic
parameters. Such a formulation is complicated and inefficient for computation as it requires sol\(ln% an eigenvalue problem at each ray
step. It also requires that a medium be specified with elastic parameters. This is inconsistent with the common practice in seismic
data processing where anisotropy is usually described with Thomsen parameters. This inconsistency may result in ambiguity in
specifying the elastic parameters. To overcome these difficulties, we have reformulated the kinematic and dynamic raytracing .
systems in terms of phase velocity. The new formulation is much simpler and computationally more efficient than the previous elastic
parameter based formulations since solution of the eigenvalue problem at each raY] step is no longer required. The efficiency of the
dynamic raytracing system is further enhanced by using a newly proposed nonorthogonal ray-centered coordinate system. Since the
medium for raytracing is now specified with phase velocity, the possible ambiguity in specifying elastic parameters is also eliminated.
The kinematic and dynamic raytracing systems developed in this study thus provide a useful and efficient tool for seismic modeling
and imaging in anisotropic media, espemagy for the transversely isotropic and orthorhombic media where simple analytical
expressions for phase velocity have been derived by Thomsen (1986) and Tsvankin (2001), and the integration of the ray tracing
systems can be carried out relatively inexpensively using these expressions.

Introduction
Kinematic and dynamic raytracing in inhomogeneous, anisotropic media is an essential building block for seismic modeling and
|mag1!ng with ray methods. Kinematic raytracing is required for_traveltime modeling while dynamic raytracing is needed for ray
amplitude calculation. The latter can also be used to construct Gaussian beams along a ray.” Alkhalifah (1995), for example, has
employed this technique for anisotropic Gaussian-beam depth migration. Kinematic raytracing in anisotropic med|a.has. traditionally
been formulated in terms of elastic parameters (Cerveny, 1972;" Kendall and Thomson, 1989). Such a formulation is, however,
physically not intuitive and computationally cumbersome (Cerveny, 1989). Moreover, it requires a medium to be specified with elastic
pra_rameters._The common practice in seismic data processm%, on'the other hand, is to describe anisotropy with Thomsen parameters.
his inconsistency may cause problems in medium specification. For example, it may result in ambiguity in specitying elastic
parameters for P-wave imaging in weak transversely isotropic fTI) media. The elastic parameter based formulation for anisotropic
dynamic raytracing is even more complicated as it now involves differentiation of kinematic ray equations with respect to ray
parameters (Hanyga, 1986; Cerveny, 2001). The purpose of this study is to formulate the kinematic’and dynamic raytracing systems
in anisotropic media in terms of phase velocity. This formulation overcomes some of difficulties of the elastic parameter based
formulation, and is especially useful for Tl and orthorhombic media where simple analytic expressions for phase velocity have been
derived in terms of the Thomsen parameters (Thomsen, 1986; Tsvankin, 2001).

Kinematic raytracing system

The kinematic raytracing equations in anisotropic media have been derived by Cerveny (1972); we summarize here only the results
needed for this study. We start with the frequency-domain equation of motion in inhomogeneous, anisotropic media:

0 ou,
e, M ltawrou =0, 1
OXi [ ijki 6X| J /a“lj ( )
where U is displacement, C,,; are the elastic parameters, 0 is the density, and cc is the angular frequency. Throughout this study we

will follow the convention that a lowercase subscript takes the values of 1, 2, and 3 while an uppercase subscript takes only the values
of 1 and 2. In the zero-order ray method, we seek an approximate solution to (1) in the form of U, (X, ) =U, (x,)€“ ), where

U, (x) and7(x ) are, respectively, the amplitude and traveltime along the ray. Substituting this ray solution into (1) and letting
& — oo yields the Christoffel equation:

(rjk _5jk « =0, (2)

where the Christoffel matrix I, = a;,, p; P, with the density normalized elastic parameters &, = Cy / P, and the slowness vector

p =0 r/ 0x; . Equation (2) is an eigenvalue problem and its eigenvalues take the form:

G(x,p)=1 3)
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which solves the eigenvalue equation
(rjk _Géjk)gk =0, (4)

where g, is the normalized eigenvector and often referred to as the polarization vector. Multiplying (4) with g; and taking into

account that g, g, =1, we obtain

Since p =07, equation (3) is a nonlinear first-order partial differential equation for the phase function or eikonal 7(x; ) which
describes propagation of a P- or S-wave wavefront. This eikonal equation can be solved using the Hamiltonian (Cerveny, 1972)

1
H(Xi,pi)ZE(G(Xi’pi)_l)’ (6)
yielding the kinematic raytracing system for P or S waves:
%:G_H:EG_G: pP.g. g (73)
dr dp.  20p Qe 19 9

dp __9H _ 109G __10ay,

dr a_xI 2 0x; 2 0x

PP 9 Y- (70)

Equations in (7) are complicated and inefficient for computation as they require solving the ei%envalue roblem (4) at each ray step.
Efforts have been made to simplify equations (7). Cerveny v 989?1, for example, has found that (7) can be reatle/ simplified by using
factorized anlso_trotglc media, but such a medium requires that the relative spatial variations be identical for all elastic parameters
limiting the application of this approach for inhomogeneous media. Equations (7) also require the medium to be specified in terms of
elastic parameters. This may result in ambiguity in specifying parameters, for example, for the widely used weak Tl media. For P wave
imaging in such a medium, usually only vertical P-wave velocity a,and Thomsen parameters O and & are estimated from data.
Deéerrralnaltloq of[}he elastic parameters from parameters a,,& and’ 0 , on the other hand, requires explicit knowledge of S-wave
vertical velocity [, .

To overcome these difficulties, we reformulate the ray equations in (7) in terms of phase velocity in the same way as the ray equations
in isotropic media are formulated (e.g., Zhu and Chun, 1994). The only difference is that the phase velocity in isotropic media is equal
to the group velocity and is simply referred to as velocity. To accomplish this, we first note that Geoltrain (1989) has shown that the

group velocity for energy propagation along the X; direction is given by V; =&, p,g; 9, Thus equation (7a) can be rewritten as
dx; / d7 =V, , showing that wave energy propagates along ray x = (x1, Xz Xs). To simplify equation (7b), we take into account the fact
that the eigenvalue G in (5) and its derivative OG/ dx; are both homogeneous functions of the second degree in p,. This leads to

0G(x,p) _ 1 3G(x,n) _2dv

2

>=G(x,n) and
Y (6.0 an 0x; vioooox v X

=20dInv/ox;, (8)

where n, is the unit vector along the slowness vector p, and v =Vv(x,n) is the phase velocity. A substitution of the second
equation in (8) into (7b) enables us to rewrite the kinematic raytracing system (7) in terms of phase velocity:

dx /dr =V, (%a)

dp,/d7 =-0aInv/ox, (9b)
where group velocity V; is calculated from phase velocity with the formulae given, for example, by Tsvankin (2001).

The ray tracing system in (9) is simpler than that in (7) and takes the same form as its counterpart in isotropic media except that the
right-hand side of (9a) is now given byV, instead of V; as in isotropic media, showing that wave energy in an anisotropic medium no
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longer propagates along the direction of the slowness vector due to the angular dispersion induced by the anisotropy. System (9) is
also computationally more efficient than (7), especially for Tl and orthorhombic media as the derivatives in (9) can be evaluated
quickly with the expressions for phase-velocity given by Thomsen (1986) and Tsvankin (2001). Solution of eigenvalue problem (4) at
each ray step is no longer needed. As the medium for raytracing is now specified with phase velocity, the ambiguity problem in
specifying elastic parameters for weak Tl media is eliminated.

Dynamic raytracing system . _ _ _
Dynamic ra racm%was originally proposed for ray-amplitude calculation (Cerveny, 1972; Kendall and Thomson, 1989). Since then, it
has found many other applications in seismic modeling and imaging (e.g., Alkhalifah, 1995; Cerveny, 2001). For example, it has been
used to construct Gaussian-beam solutions to equation (1). Dynamic raytracing equations in anisotropic media are commonly
expressed in Cartesian coordinates (e.g., Cerveny 1972). This leads to a system of six linear first-order ordinary differential equations.
For many applications, it is convenient to use ray-centered coordinates. The dynamic raytracing system also fakes the simplest form
in such coordinates, reducing the number of differential equations in the system from six to four. Here we will first formulate dynamic
rayttracmg equations in terms of phase velocity in Cartesian coordinates, and then transform them to a ray-centered coordinate
system.

Consider the ray coordinates (), y,,T)where y,and y. are the ray parameters that specify a ray and 7 is the traveltime along the

ray. The dynamic raytracing system in Cartesian coordinates can then be obtained by differentiating the ray equations in (9) with
respect to the ray parameters. This gives

dQ /dr =AQ, +B,P, dR/dr =-C;Q; - D;P,, (10)
where Q =0x /0y ,P, =0p, /dy,and yrepresents y, or y,.The coefficients A,,B;,C;and D; are given by
A, =0V, /ox;, B, =9V,/op, (11a)
C, =0%Inv/ox dx;, D, =8*Inv/dx dp;. (11b)

Ray-centered coordinates in anisotropic media (;, Y,,7) have been used by Hanyga (1986) and Cerveny (2001) to derive dynamic
raytracing equations. The coordinates are defined along a reference ray, often referred to as the central ray. Coordinate 7 is the
traveltime along the central ray and coordinates Yy, and Y, lie in the plane tangential to the wavefront at ray point 7.Their

corresponding basis vectors are (e,,€,,€,) with

e, = (V,\V,.V,). (12a)

The ray-centered coordinates in anisotropic media are nonorthogonal as the raé/ is no longer perpendicular to the wavefront as it is in
an isofropic medium. Different approaches have been used by Han%/gad (19 62 and Cerveny (2001) for defining the plane basis
e di

vectors €, . As an alternative, we define them along the central ray by t erential equations

de, /dr =v(e, * Ov)p. (12b)

Equations in (12b) are the same as those used by Popov and Psencik (1978) for defining the plane basis vectors of the ray-centered
coordinates in isotropic media. Compared to the previous choices by Hanyga (1986) and Cerveny (2001), the ray-centered coordinate
system defined by (12) has the advantage in that it reduces to the ray-centered coordinate system described by Popov and Psencik

(1978) in an isotropic medium. Moreover, its plane basis vectors (€, €, ) are orthonormal in the tangential plane and can therefore
be determined by integrating just one of them along the central ray.

Using the definitions of the basis vectors given in (12), the transformation matrix from the ray-centered coordinates to the Cartesian
coordinates T;; can be written as

Tk =& Ts=¢ =V, (13)

where €,; are the Cartesian components of basis vectors €, with K= 1, 2. We also denote the slowness vector in this ray-centered

coordinate system by ¢, =07/dy, . Using the transformation matrix (13) and its inverse, and following the approaches used by
Hanyga (1986) and Cerveny (2001) for deriving their the dynamic ray equations in the ray-centered coordinates, we obtain from (10):
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d@ /dT:Au(jJ +BIJ§J1 dﬁu/dT:—Cu@ _DIJ5J1 (14)
where Q =0y, /0y, P, =0q, /dy. The coefficients in (14) are given by

A, =0(3Inv/dy,)/dq, ~v(av/dy,)P,, B, =aV, /aq (152)
C,, =v'a%v/ay, dy,, D,, =0(dInv/dy,)/0q, —v(dv/dy,)p,, (15b)

where \7I and P, are, respectively, the components of the group velocity vector V and slowness vector p in the ray-centered
coordinate system. The dynamic raytracing system in (14) consists of four linear first-order ordinary differential equations and is
similar to that in isotropic media except that it contains two extra terms with respective coefficients A ; and D,; due to the effects of

anisotropy. For an isotropic medium, these coefficients vanish and (14) reduces to the well-known dynamic raytracing system in the
isotropic ray-centered coordinates (Popov and Psencik, 1978).

Dynamic raytracing systems (10) and (14) are much simpler and computationallyé more efficient than those formulated in terms of

elastic parameters (e.g., Cerveny, 1972; Hanyga, 1986; Kendall and Thomson, 1989) since the elastic parameter based formulations

involve differentiation of the complicated funcfions on the right-hand sides of equations (7) with respect to ray parameters. Evaluations

of the right-hand sides of dynamic raytracing systems in (10) and (14), on the other hand, are relatively simple, especially for Tl and

_?rthorEpnztz)go??lsotroplc media where simple ‘analytic expressions for phase velocity have been derived by Thomsen (1986) and
svankin .

Conclusion

We have developed new systems for kinematic and dynamic ray tracing in ir)h.omo%eneous, anisotropic media. Formulated in terms of
phase velocity, these systems are simpler and comf)utatlonally more efficient than previous elastic parameter based raytracing
systems _I(e.g., Cerveny, 1972; Han?/gaz 1986; Kendall and Thomson, 1989; Cerveny 2001), especially for the dynamic raytracin
system. The previous dynamic raytracing systems involve differentiation of the complicated functions on the right-hand Sides o
equations (7) with respect to ray parameters while systems (10) and (142 require only simple evaluation of the derivatives of phase
and group velocities. The new kinematic and dynamic systems also have the advantage in that the medium used for raytracing is now
specified with phase velocity, eliminating the need to calculate elastic prarameters from Thomsen parameters and hence the possible
ambiguity in specifying elastic parameters for P-wave imaging in weak Tl media.

The efficiency of our dynamic raytracing is further enhanced by the introduction of the nonorthogonal ray-centered coordinate system

(12). Determination of the plane basis vectors of this coordinate system requires only a single integration along the central ray, and

the number of dynamic ray equations in the coordinate system redtces from six to four. This dynamic raytracing system, coupled with

kinematic ray equations in (9), thus ﬁrowdes an efficient and useful tool for seismic modeling and |mag|n%_ in anisotropic media. These
|

systems are especially useful for the Tl and orthorhombic media where the right-hand_sides of equations in (9) and 514) can be
evaluated relatively inéxpensively with the analytic expression for phase velocity given by Thomsen (1986) and Tsvankin (2001).
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