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Abstract 
This paper is a continuation of the paper by Blias (2005). Here we analyze so-called “errors” in stacking velocities in geologically 
complex cases. Using a simplified analytical connection between stacking and RMS velocities and velocity modeling, we show that 
the real reason for the anomalous behaviour is non-linear lateral velocity changes in shallow layers (the second-order derivative). 
We analyze some of statements about the cause of the stacking velocity anomalies and confirm our conclusions with velocity 
modeling on several models. 
 
Introduction 
In geologically complex areas interpretation of seismic reflections and their conversion to depth is an important problem. Several 
authors investigated this problem using velocity modeling: Miller (1974), Honeyman (1983), Blackburn (1980), Armstrong et al. 
(2001), Pickard (1992), Armstrong (2002). They created some depth velocity models, which were important for solving some 
geological problem. For each specific geological situation, one can create its’ own model, calculate rays and time arrivals and see 
how stacking velocities correspond to real (model) velocities but this does not give us much information and general knowledge 
about the connection between stacking and velocities. It’s understandable that the number of specific depth velocity models tends 
to infinity so it’s very hard to come to right conclusions using only empirical knowledge.  
 
For example (Blackburn, 1980)), we can read conclusions like this ”Ray tracing through a number of different models has 
highlighted some of the difficulties in velocity determination in geologically complex areas. Errors in conversion of stacking 
velocities to true average velocities are due to timing errors as a result of migration and also raypath distortions due to the 
complex overburden. The study highlights the need for migration of all traces in a CDP gather prior to stacking velocity 
determination”. These conclusions were made 25 years ago but they seem to be acknowledged by many geophysicists. However, 
it’s interesting to mention that each part of this statement is not quite correct except the first one about the difficulties.  
(i) We cannot call “Errors” what we would not want to see but what is caused by the nature. We call these “errors” because “one 
wants the stacking velocities to approximate real velocities”, Blackburn (1980, p. 1466). Maybe this reason is not enough to 
interpret the difference between the stacking velocities (what we see on real data) and average velocities (what we would like to 
see) as “errors”. 
(ii) We don’t have to convert stacking velocities to true average velocities but to interval velocities!  
(iii) Migration and “raypath distortions” influence are not the reasons that causes the “errors” in stacking velocities. A medium with 
horizontal homogeneous layers also has “raypath distortions” if we mean that the rays are not straight. 
(vi) There is no need for prestack migration prior to stacking velocity determination in the presence of a shallow velocity anomaly 
and relatively small dips of deep reflectors. Migration may be needed only if we have reflectors with big dips. 
 
In a more recent paper (Armstrong et al. 2002), we can read: “Derivation of conventional stacking velocities is based on the 
assumption that of hyperbolic moveout. This is only true for horizontal layers of constant interval velocities. In the presence of 
velocity anomalies, stacking velocities show systematic errors”. “If an anomalous stacking velocity response at a target horizon is 
observed to correlate with the position of an overburden velocity anomaly, then the time delays must have survived the process of 
wavefront “healing”. This follows because the origin of the anomalous response is non-hyperbolic moveout within CMP 
gathers introduced by time delays caused by the velocity anomalies.”  
In these two sentences we can also find some not correct statements: 
(i) Derivation of conventional stacking velocities is not based on the assumption of hyperbolic moveout. It is based on the 
assumption that moveout is close to hyperbolic. 
(ii) This is not correct for horizontal layers of constant interval velocities because for a layered medium, even with horizontal layers 
of constant interval velocities, moveout is not hyperbolic. 
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(iii) In the presence of velocity anomalies, stacking velocities don’t show systematic errors. It depends on where these velocity 
anomalies are and what we mean by “systematic errors”. 
(iv) The origin of the anomalous response is not non-hyperbolic moveout within CMP gathers 
 
These kinds of sentences lead to statements like this: “Stacking velocities, as derived from NMO correction of CDP gathers, need 
have no physical significance to the true velocity distribution below the gather location” Blackburn (1980, p.1466). 
We will show the real reason for “error” behaviour of the stacking velocity. We will see that there are no “errors” in “strange” 
stacking velocities and these velocities can be used to obtain accurate interval velocities. In my paper (Blias, 1981, 2003) I 
described an analytical explanation of so called “errors” in stacking velocities. Here I will show model examples that confirm 
statements (i) – (vi) and (i) – (iv) above. We will also come to some general conclusions, based on a simple analytical description 
of stacking velocities and modeling results. 
The analytical connection between stacking and RMS velocities shows that the difference between them is not an error. To make it 
easier to obtain more clear understanding of this connection, let us simplify the formula for stacking velocities (Blias 2005). With 
some assumptions, we can rewrite this formula as: 
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where F is the depth of the curvilinear boundary, H is a reflector depth and VAVE is an average velocity for the reflector depth 
(Fig. 1).  
This formula gives us understanding of what can happen with 
stacking velocity in different situations. We should mention 
that if we have several local velocity anomalies, we just add 
the similar terms for each anomaly. 
 
(i) First of all, the difference between NMO and RMS 
velocities depends on the values of the product 

 

H
H

F
FV

VV
P AVE

2

21

1
11








 −′′







−=  

 

If the value of P is small then the expression in the square 
brackets is close to 1 and the stacking velocity is close to the 
RMS velocity and we don’t have a problem to find intervalvelocities   Fig. 1. Velocity model with shallow anomaly 
using Dix’s formula. If the value of P is relatively big then the 
expression in the square brackets differs from 1 and the difference between the stacking and RMS velocities becomes significant. 

(ii) Second, the NMO velocity can be bigger or less than the RMS velocity. It depends on the sign of F′′(1/V1 – 1/V2): 
 

  VNMO > VRMS   if  F′′(1/V1 – 1/V2)<0   and  VNMO < VRMS   if  F′′(1/V1 – 1/V2) > 0   (2) 
 

(iii) From (2) IT follows that if V1 < V2 (we have a low velocity anomaly) then at the points X1 and X3 VRMS <  VNMO because at these 

points F′′ > 0. At the center of anomaly X2, F′′ < 0 and therefore VRMS is bigger than VNMO. If we have a high velocity anomaly 
(V1 > V2), the correlation between the stacking and RMS velocities is the opposite. 
(iv) Formula (1) shows that there are two factors, which influence stacking velocity values. First is RMS velocity (what we like) and 
the second is non-linear lateral changes in the interval velocity – the anomaly itself. If the reflector depth H is not far from the 
anomaly depth F then (1-F/H)2 is small and the anomaly influence is small. With the reflector depth increasing, the value of  
(1-F/H)2 is also increasing and from some depth it becomes significant. The deeper we go, the less the lateral changes of RMS 
velocity (as any average velocity) and the bigger lateral changes of the value in the square brackets. If we have a strong shallow 
anomaly then, for close reflectors, the NMO velocity is close to RMS. For deep reflectors, the difference between the stacking and 
RMS velocities can be very big.  
(v) From (1) it follows that the expression in the square brackets can be negative. This means that we will observe reverse time 
arrivals – minimum time will be at non-zero offset. In this case 1/VNMO

2 < 0 so we cannot use stacking velocity at all to describe 
NMO function. We have to use coefficient b = 1/VNMO

2, which is negative for this case. 
This sounds strange but this is what the formula (1) implies and modeling confirms this (model example will be in fig. 6-7). 

Moreover, the proper statement is even stronger: If F′′(1/V1 – 1/V2) < 0 then there exists such a critical depth, that all horizontal 
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reflectors, deeper than this depth, will create a reverse NMO function. From (1), we can derive an approximate formula for this 
critical depth: 
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For most cases this critical depth is too big to see this effects but it is nonetheless possible.   
Let us consider three model examples to confirm stated above.  
Model 1. This model shows that the derivation of conventional stacking velocities is not based on the assumption of hyperbolic 
moveout. That is, the origin of the anomalous response is not non-hyperbolic moveout within CMP gathers. Fig 2a shows the 
model with a shallow velocity anomaly created by a quite strong curvilinear boundary (V1=1.6 and V2 = 2.8 km/sec). 

 
 
 
 
 
 
 
 
 
 

Fig. 2a. Depth velocity model      Fig. 2b. Zero-offset times     Fig. 2c. Stacking velocities 

 
Fig. 2d. Average difference between NMO  Fig. 2e. Maximum difference between NMO Fig. 3 Synthetic gathers and hyperbolic NMO 

function and hyperbolic approximation  function and hyperbolic approximation   
 
Fig 2c - 2e and 3 show that in spite of small difference between the time arrivals and 
their hyperbolic approximation (standard deviation is less than 1 msec and maximum 
difference is less than 4 msec), stacking velocities (fig. 2c) show big “errors”: that is big 
oscillations. Fig 4 shows the curvilinear boundary and its second-order derivative.  For 
deep reflectors, as stated, stacking velocity repeats the behavior of the second-order 
derivatives (compare the lowest curve on fig. 2c and the second-order derivative, fig. 4 ), 
while for shallow reflector it’s close to RMS velocity. 
3. Model 3 confirms that if we have deep velocity anomalies (horizontal changes), they 
don’t cause anomalous behaviour. This also follows from (1). Fig. 5 shows a depth 
velocity model with complex boundaries.            Fig. 4. Boundary and its second-order 
derivative 

              5a. Depth velocity model     Fig. 5b. Stacking velocities     Fig. 5c. RMS velocities                   
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Comparing fig. 5b and fig. 5c, we see that in spite of complex deep boundaries (complex geology), stacking velocities are quite 
similar to the RMS velocities. This confirms that “bad” stacking velocities are not caused by migration or by the raypath distortions. 
 
Let us consider another velocity model with a strong velocity anomaly, which causes reverse a NMO function for deep reflectors. 
The depth velocity model is potted in Fig. 6a. Fig. 6b and 6c show zero-offset times and stacking velocities. In the center of 
anomaly (around the point XCDP  = 5 km), the NMO functions are reversed. It means that the zero-offset time T(x=0) is a maximum 
point but not the minimum as it should be in the “normal” case. This is clearly seen in fig. 7. Fig. 7a shows CDP gathers for no-
anomaly interval. Time   

 
Fig. 6 a. Depth velocity model  

  Fig. 6b . Zero-offset times     Fig 6.c Stacking velocities 
 

arrivals have their minimum at zero offset. Fig. 7b shows CDP gathers around the center of the anomaly. We can see that, from 
deep horizons, the zero-offset trace time is bigger than the time for the traces with non-zero offset. This corresponds to the fact, 
described above (see formula (3)), that in the presence of strong shallow anomaly, NMO function may have maximum time at the 
zero-offset trace  

Fig. 7 a. CDP gathers for the interval without anomaly      Fig. 7 a. CDP gathers for the center of anomaly 
 
Conclusions 
Analytical connections between stacking and RMS velocities and velocity modeling showed that the non-linear change of the 
velocity in the shallow part is the main reason for anomalous behaviour. So-called “Errors” in stacking velocities are not real errors 
and they are not caused by non-hyperbolic moveout or by migration or by raypath distortions as one can read sometime. Complex 
geology itself (dipping reflectors) does not cause a big difference between the RMS and stacking velocities. Model calculations 
confirm these statements. For reflectors close to the local anomaly, stacking velocity is close to RMS velocity. With the reflector 
depth increasing, the second term in (1) becomes more significant and causes “errors” in stacking velocities. 
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