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Summary 
 
Continuity along reflectors in seismic images is used via Curvelet representation to stabilize the convolution operator inversion. The 
Curvelet transform is a new multiscale transform that provides sparse representations for images that comprise smooth objects 
separated by piece-wise smooth discontinuities (e.g. seismic images). Our iterative Curvelet-regularized deconvolution algorithm 
combines conjugate gradient-based inversion with noise regularization performed using non-linear Curvelet coefficient thresholding. 
The thresholding operation enhances the sparsity of Curvelet representations. We show on a synthetic example that our algorithm 
provides improved resolution and continuity along reflectors as well as reduced ringing effect compared to the iterative Wiener-based 
deconvolution approach. 

Introduction 
 
In this paper, we address the classical discrete-time deconvolution problem. The forward problem is 

 d = Km + n  (1) 
where d  is the data, K  the convolution operator (cyclic matrix), m  the seismic reflectivity and n  zero-mean additive white Gaussian 
noise with variance σ 2. The assumption of white noise can be relaxed to colored noise as long as its covariance matrix is near 
diagonal in curvelet frames. The inverse problem is to determine m  given d  and K . Notice that we do not consider the problems of 
blind deconvolution and source signature estimation. 

A naive approach to obtain an estimate for ˜ m  would be using the operator inverse K−1
 as 

 ˜ m = K−1d = m + K−1n  (2) 
or K +

, the pseudo-inverse, for a non-invertible K . Unfortunately, the discrete deconvolution problem is ill-conditioned. In that case, 
the variance of K−1n  is large making ˜ m  an unsatisfactory deconvolution estimate. 

Since the 60’s, deconvolution filters based on the Wiener theory are widely used. Wiener filters minimize the mean-squared-error 
(MSE) [15]. As early as the mid-70’s to early 80’s, this minimal energy approach was generalized towards an l1-norm minimization, 
designed to bring the spikyness of the reflectivity [3,10,11]. In the image processing and wavelet communities, similar ideas emerged 
in the early 90’s where deconvolution problems are solved by also exploiting sparseness of the model but now on certain bases that 
are designed to be sparse on the model (see e.g. [9,14,16]). 

Our approach borrows from both the minimal structure concepts introduced in geophysics and from above recent ideas in image 
processing, where the sparseness of certain frame expansions is used to regularize deconvolution [4,14]. Since the Earth can be 
considered to consist of reflectors on piece-wise smooth curves, recently developed curvelet frames are the appropriate choice. 

We begin by providing a brief overview of curvelet frames. We then present our curvelet-regularized deconvolution algorithm and 
discuss its practical implementation. An illustrative synthetic example follows. 

Curvelet frames 
 
The curvelet transform is a new member in the family of Computational Harmonic Analysis tools [1,2]. Tight curvelet frames were 
initially designed to provide optimally sparse representations for objects that are smooth except along smooth curve-like 
discontinuities (e.g. image with edges). Curvelets are obtained by partitioning the 2D Fourier plane into dyadic coronae and sub-
partitioning those into angular wedges. Curvelets obeys a parabolic scaling law – at scale 2− j

, each element has an effective support 
of length 2− j / 2

 and width 2− j
. The resulting curvelet frames are multi-scale, multi-directional, highly anisotropic, and localized both in 

space and frequency. Curvelets can perform decomposition and reconstruction of any function much like an expansion in an 
orthonormal basis, but in contrast, curvelet representations are moderately redundant. 

On the practical side, there exists fast O(NlogN) algorithms that allow for a decomposition of n-by-m images f with n*m=N. These 
algorithms are numerically tight and have an explicit construction for the adjoint that equals the pseudo-inverse 

 C* ⋅ = C+ ⋅  and C*C = I (3) 
where C  represents the curvelet transform. 
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Figure 1: Five curvelets at different scales and orientation 
 
Consider a function f of two variables that is piece-wise twice differentiable. Further, let the discontinuity curves separating the smooth 
pieces of f also be piece-wise twice differentiable. From the non-linear perspective, the optimal approximation rate equals [5] 

 f − f k
o

2

2
∝ k−2 for k → ∞ (4) 

where f k
o  is the partial reconstruction of f  using the k  largest terms in the basis. Curvelet frames achieve [2] 

 f − f k
c

2

2
≤ Ck−2 logk( )3

 for k → ∞ (5) 
In words, we quote from [2] “there is no basis in which coefficients of an object with an arbitrary C 2  singularity would decay faster 
than in a curvelet frame”. For comparison, the decay rate for Fourier coefficients is O( k − 1 / 2 ) and for wavelet coefficients O( k − 1 ). 

Curvelet shrinkage-based signal estimation 

Consider framework with K = I  (i.e. denoising problem). In a basis of wavelets, a simple shrinkage (i.e. soft-thresholding) of the 
wavelet coefficients of the noisy data minimizes a quadratic distance to the data penalized by a l1-norm [8]. The variational problem is 

 ˜ m = argmin
m

1

2
d − m

2

2 + λ Wm
1
 (6) 

where W  represents the wavelet transform. In curvelet frames, soft-thresholding solves only (6) approximately but already provides a 
good estimate for the original signal [13]. 

Curvelets for seismic deconvolution 
 
Main features in seismic images correspond to unconformities in the Earth’s subsurface which tend to follow piece-wise smooth 
curves, allowing for pinch-outs and faults. Hence the curvelet representation of seismic images can be expected to be sparse. We use 
this additional piece of information to fill the null space of the operator and make the inversion more stable. The forward problem 
framework is reformulated as 

 d = Fx + n  (7) 

where x  is a vector of curvelet coefficients such that m = C * x , and F⋅ = KC ⋅. The variational problem now becomes [4] 

 ˜ x = argmin
x

1

2
d − Fx

2

2 + λ x
1
 (8) 

In words, we want to deconvolve the data and stabilize the process by imposing a sparsity constraint on the curvelet representation of 
the model. Intuitively speaking, (8) solves the deconvolution problem ”curvelet-wise” but the exact solution is not trivial due to the non-
differentiability of the l1-norm at the origin. A popular choice is the Iterative Reweighted Least-Squares (IRLS) method that is known to 
give a good approximation to the l1-norm [6,12] to solve (8). We propose a method inspired by the work in [4]. We combine the 
Conjugate Gradient (CG) method with soft thresholding to obtain an approximate solution (8). 

First, the CG-method is applied to the normal equations F * d = F * Fx + F * n . Typically, the noise that gets amplified by the small 
singular values of F * F  is regularized by stopping CG prematurely; the stopping criterion is proportional to the noise level. Our 
approach regularizes the noise by soft thresholding the curvelet coefficients after a limited number of CG iterations and then restarting 
CG with the thresholded estimate. Besides removing the noise, soft thresholding enhances the spikyness (minimizes the l1-norm of 
the coefficients). This iterative CG regularization approximately solves (8) while preserving the frequency information associated with 
the small singular values. The threshold level is taken large at the beginning and made smaller towards the end. 
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The algorithm is given below: 

1. Initialize threshold Γ0, first guess x0, set number of CG iterations between thresholdings J  and number of iterations Lmax 

2. For i =1: Lmax 

• x i = CG( ˜ x i−1,J) ,  

• Soft-threshold the coefficients x i with the threshold Γi  and obtain ˜ x i.  

The reflectivity estimate is given by the inverse transform ˜ m = C * ˜ x . 

Results 
 
The noisy data are obtained by convolving the Ricker wavelet with the Marmousi seismic reflectivity and adding white Gaussian noise 
(SNR~6dB). As a reference, the Wiener filter is 

 ˆ H (ω) =
ˆ G (ω)

ˆ G (ω)
2

+ Pn (ω)
Pm (ω)

, (9) 

where G(ω) is the Fourier transform of the seismic source signature, Pm(ω) the power spectrum of the model, and Pn(ω) the power 
spectrum of the noise. In practice, Pm(ω) is unknown so we iteratively estimated it using the method described in [7]. Figs. 2c & 2d 
show the iterative Wiener-based deconvolution estimate and Figs. 2e & 2f the estimate obtained using the proposed algorithm. Unlike 
the Wiener filter, our method is able to reconstruct frequency components which have been degraded by the noise by exploiting the 
sparsity of the reflectivity’s curvelet representation. As a result, the frequency content of the deconvolution estimate is improved as 
well as the continuity along reflectors. In particular, we point out that the target area is better resolved (Figs. 2d & 2f). Moreover, the 
ringing effect is also reduced but some artifacts, related to the residual noise and Gibbs-like effects, are still present in the curvelet 
deconvolved image. 

Conclusions 
 
We developed and demonstrated a new iterative curvelet-regularized deconvolution algorithm that exploits continuity along reflectors 
in seismic images. The motivation for the curvelet approach stems from the realization that classical methods like Wiener filtering are 
not able to preserve frequency contents degraded by noise. Sparseness in the curvelet domain, on the other hand, brings out the 
signal components mostly influenced by the noise. Our algorithm can be applied to a wide range of applications as long as 1) the 
model is known to be otherwise smooth having discontinuities along piece-wise smooth curves and 2) the covariance matrix of the 
noise is near diagonal in curvelet frames. So far, our regularization focused on enhancing the sparseness of the curvelet coefficients. 
The next step of our research will be to exploit apparent continuity along reflectors which, based on our experience with continuity-
enhanced imaging, will further reduce the previously mentioned artifacts. 
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Figure 2: Synthetic example of sparseness-constrained seismic deconvolution with Curvelets and comparison with iterative Wiener-based deconvolution approach. (a) Noisy data 

(σnoise=0.5σdata i.e. SNR~6dB). (b) Close-up on the reservoir region in the noisy data. (c) Iterative Wiener-based deconvolution estimate (5 iterations with a regularization 
parameter of 10-4 to stabilize the power spectrum estimate at frequencies where the convolution operator response goes to zero) (d) Close-up on the reservoir region in the iterative 
Wiener-based deconvolution estimate. (e) Sparseness-constrained deconvolution estimate with Curvelets (5 CG iterations between thresholdings – 100 times) (f) Close-up on the 

reservoir region in the sparseness-constrained deconvolution estimate with Curvelets. 


